Zur Kurzanzeige

dc.creatorAbdi, Farshid
dc.creatorKormanyos, Emily
dc.creatorPelizzon, Loriana
dc.creatorGetmansky, Mila
dc.creatorSimon, Zorka
dc.date.accessioned2021-09-28T09:43:17Z
dc.date.available2021-09-28T09:43:17Z
dc.date.issued2021-05-06
dc.identifier.urihttps://fif.hebis.de/xmlui/handle/123456789/2420
dc.description.abstractWe focus on the role of social media as a high-frequency, unfiltered mass information transmission channel and how its use for government communication affects the aggregate stock markets. To measure this effect, we concentrate on one of the most prominent Twitter users, the 45th President of the United States, Donald J. Trump. We analyze around 1,400 of his tweets related to the US economy and classify them by topic and textual sentiment using machine learning algorithms. We investigate whether the tweets contain relevant information for financial markets, i.e. whether they affect market returns, volatility, and trading volumes. Using high-frequency data, we find that Trump’s tweets are most often a reaction to pre-existing market trends and therefore do not provide material new information that would influence prices or trading. We show that past market information can help predict Trump’s decision to tweet about the economy.
dc.relation.hasversionhttps://fif.hebis.de/xmlui/handle/123456789/2435?314_rev
dc.rightsAttribution-ShareAlike 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subjectFinancial Markets
dc.titleA Modern Take on Market Efficiency: The Impact of Trump’s Tweets on Financial Markets
dc.typeWorking Paper
dcterms.referenceshttps://fif.hebis.de/xmlui/handle/123456789/2097?Twitter API
dcterms.referenceshttps://fif.hebis.de/xmlui/handle/123456789/2098?TTA
dcterms.referenceshttps://fif.hebis.de/xmlui/handle/123456789/1504?TAQ
dcterms.referenceshttps://fif.hebis.de/xmlui/handle/123456789/2099?FRD
dc.source.filename314_SSRN-id3840203
dc.identifier.safeno314
dc.subject.keywordsmarket efficiency
dc.subject.keywordssocial media
dc.subject.keywordstwitter
dc.subject.keywordshigh-frequency event study
dc.subject.keywordsmachine learning
dc.subject.keywordsetfs
dc.subject.jelG10
dc.subject.jelG14
dc.subject.jelC58
dc.subject.topic1implement
dc.subject.topic1donald
dc.subject.topic1tweet
dc.subject.topic2fang
dc.subject.topic2describe
dc.subject.topic2exhibit
dc.subject.topic3construct
dc.subject.topic3note
dc.subject.topic3kirilenko
dc.subject.topic1nameCorporate Governance
dc.subject.topic2nameSaving and Borrowing
dc.subject.topic3nameTrading and Pricing
dc.identifier.doi10.2139/ssrn.3840203


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Attribution-ShareAlike 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-ShareAlike 4.0 International