Zur Kurzanzeige

dc.creatorBernardi, Mauro
dc.creatorCostola, Michele
dc.date.accessioned2021-09-28T09:36:52Z
dc.date.available2021-09-28T09:36:52Z
dc.date.issued2019-02-12
dc.identifier.urihttps://fif.hebis.de/xmlui/handle/123456789/2347
dc.description.abstract"We propose a shrinkage and selection methodology specifically designed for network inference using high dimensional data through a regularised linear regression model with Spike-and-Slab prior on the parameters. The approach extends the case where the error terms are heteroscedastic, by adding an ARCH-type equation through an approximate Expectation-Maximisation algorithm. The proposed model accounts for two sets of covariates. The first set contains predetermined variables which are not penalised in the model (i.e., the autoregressive component and common factors) while the second set of variables contains all the (lagged) financial institutions in the system, included with a given probability. The financial linkages are expressed in terms of inclusion probabilities resulting in a weighted directed network where the adjacency matrix is built “row by row"". In the empirical application, we estimate the network over time using a rolling window approach on 1248 world financial firms (banks, insurances, brokers and other financial services) both active and dead from 29 December 2000 to 6 October 2017 at a weekly frequency. Findings show that over time the shape of the out degree distribution exhibits the typical behavior of financial stress indicators and represents a significant predictor of market returns at the first lag (one week) and the fourth lag (one month). "
dc.rightsAttribution-ShareAlike 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subjectSystemic Risk Lab
dc.titleHigh-Dimensional Sparse Financial Networks through a Regularised Regression Model
dc.typeWorking Paper
dcterms.referenceshttps://fif.hebis.de/xmlui/handle/123456789/1397?Eikon
dc.source.filename244_SSRN-id3342240
dc.identifier.safeno244
dc.subject.keywordsvar estimation
dc.subject.keywordsfinancial networks
dc.subject.keywordsbayesian inference
dc.subject.keywordssparsity
dc.subject.keywordsspike-and-slab prior
dc.subject.keywordsstochastic search variable selection
dc.subject.keywordsexpectation-maximisation
dc.subject.topic1unite
dc.subject.topic1denmark
dc.subject.topic1netherlands
dc.subject.topic2excess
dc.subject.topic2ciss
dc.subject.topic2fama
dc.subject.topic3efficient
dc.subject.topic3window
dc.subject.topic3linear
dc.subject.topic1nameFiscal Stability
dc.subject.topic2nameSaving and Borrowing
dc.subject.topic3nameSystematic Risk
dc.identifier.doi10.2139/ssrn.3342240


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Attribution-ShareAlike 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-ShareAlike 4.0 International