Zur Kurzanzeige

dc.creatorAscheberg, Marius
dc.creatorBranger, Nicole
dc.creatorKraft, Holger
dc.date.accessioned2021-09-28T09:16:42Z
dc.date.available2021-09-28T09:16:42Z
dc.date.issued2015-11-25
dc.identifier.urihttps://fif.hebis.de/xmlui/handle/123456789/2117
dc.description.abstractWe consider the continuous-time portfolio optimization problem of an investor with constant relative risk aversion who maximizes expected utility of terminal wealth. The risky asset follows a jump-diffusion model with a diffusion state variable. We propose an approximation method that replaces the jumps by a diffusion and solve the resulting problem analytically. Furthermore, we provide explicit bounds on the true optimal strategy and the relative wealth equivalent loss that do not rely on quantities known only in the true model. We apply our method to a calibrated affine model. Our findings are threefold: Jumps matter more, i.e. our approximation is less accurate, if (i) the expected jump size or (ii) the jump intensity is large. Fixing the average impact of jumps, we find that (iii) rare, but severe jumps matter more than frequent, but small jumps.
dc.rightsAttribution-ShareAlike 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subjectFinancial Markets
dc.titleWhen Do Jumps Matter for Portfolio Optimization?
dc.typeWorking Paper
dc.source.filename16_SSRN-id2259630
dc.identifier.safeno16
dc.subject.keywordsoptimal investment
dc.subject.keywordsjumps
dc.subject.keywordsstochastic volatility
dc.subject.keywordswelfare loss
dc.subject.jelG11
dc.subject.jelC63
dc.subject.topic1ample
dc.subject.topic1deutsche
dc.subject.topic1adjust
dc.subject.topic2standard
dc.subject.topic2merton
dc.subject.topic2money
dc.subject.topic3robustness
dc.subject.topic3continuousTime
dc.subject.topic3alvarez
dc.subject.topic1nameSaving and Borrowing
dc.subject.topic2nameMonetary Policy
dc.subject.topic3nameConsumption
dc.identifier.doi10.2139/ssrn.2259630


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Attribution-ShareAlike 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-ShareAlike 4.0 International