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Non-Technical Summary 

 
Given the recent financial crises, the analysis of the financial system and its interconnectedness 

has become increasingly relevant for policy authorities to monitor financial stability. Literature 

showed that direct interconnections among financial institutions can represent one of the main 

drivers of systemic risk. In this respect, network analysis proved to be an efficient approach to 

measure connectedness in the financial system.  
 

We propose a shrinkage and selection methodology specifically designed for network inference 

with high-dimensional data and present a linear regression model with Spike-and-Slab prior on 

the coefficients. The approach is then routinely adapted to estimate a high-dimensional VAR 

equation-by-equation, where the dimension of regressors is larger than the number of 

observations, preventing the estimation via the joint likelihood. The proposed model can be 

interpreted as a VAR model with a diagonal variance-covariance matrix where shocks are 

instantaneously uncorrelated and the number of covariates is strictly larger than the number of 

observations. We aim to improve the identification of the relationship (linkages) among the 

financial firms by including a very large number of institutions in each equation by maintaining de 

facto the flexibility of the univariate framework. Moreover, the model accounts for two sets of 

covariates. The first set contains the predetermined variables which cannot be penalized: these 

variables are the autoregressive component for the persistence of the given financial institution 

(the dependent variable) and a set of common factors which model the cross-section correlation 

in the residuals to ensure independence. The second set of variables contains all the (lagged) 

financial institutions in the system that can be included at a given probability. The inference of the 

network is straightforward since the financial linkages are derived by the (posterior) inclusion 

probability of a given institution. Consequently, the weighted directed network is obtained through 

the adjacency matrix which is built “row by row”, that is equation by equation, using for each firm 

the posterior inclusion probabilities of all the others in the financial system.  

 

In the empirical application, we consider the weekly closing price series of 1248 world financial 

firms (banks, insurances, brokers, and other financial services), both active and dead from 29 

December 2000 to 6 October 2017. We estimate the dynamic financial network using a rolling 

window approach and then focus on the connectedness over time by analyzing the network out-

degrees. Usually, the presence of heterogeneity in the financial linkages results in scale-free 

networks having the well-known heavy-tailed property of the degree distribution. This indicates a 



majority (minority) group of firms having a low (high) number of connections. In this respect, we 

make use of the Generalized Pareto distribution to model the shape of the out-degrees distribution. 

The variation over time of the shape parameter of the distribution can represent a signal of 

structural changes in network connectedness detecting whether there is a mutation on the number 

of network hubs (i.e., nodes with higher degrees). Interestingly, the dynamic of this hubs indicator 

exhibits the typical behavior of financial stress indicators and promptly reacts during significant 

economic and financial events. Given its persistence over time, we select the MSCI World 

Financials Index as a proxy for the considered global market and show, after controlling for 

volatility and other robustness checks, that it represents a significant predictor of market returns 

at the first lag (one week) and the fourth lag (one month). These findings demonstrate that the 

proposed approach can be successfully applied to the estimation of large financial networks and 

can be used to construct real-time financial stress indicators. 
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Abstract

We propose a shrinkage and selection methodology specifically designed for network inference

using high–dimensional data through a regularised linear regression model with Spike–and–

Slab prior on the parameters. The approach extends the case where the error terms are

heteroscedastic, by adding an ARCH–type equation through an approximate Expectation–

Maximisation algorithm. The proposed model accounts for two sets of covariates. The first

set contains predetermined variables which are not penalised in the model (i.e., the autore-

gressive component and common factors) while the second set of variables contains all the

(lagged) financial institutions in the system, included with a given probability. The financial

linkages are expressed in terms of inclusion probabilities resulting in a weighted directed

network where the adjacency matrix is built “row by row”. In the empirical application,

we estimate the network over time using a rolling window approach on 1248 world financial

firms (banks, insurances, brokers and other financial services) both active and dead from

29 December 2000 to 6 October 2017 at a weekly frequency. Findings show that over time

the shape of the out–degree distribution exhibits the typical behaviour of financial stress

indicators and represents a significant predictor of market returns at the first lag (one week)

and the fourth lag (one month).
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1 Introduction

Given the recent financial crises, the analysis of the financial system and its interconnectedness

has become increasingly relevant for policy authorities to monitor financial stability. Among

others, Bluhm and Krahnen (2014) show that direct interconnections among financial institu-

tions represents one of the main drivers of systemic risk. In this respect, network analysis proved

to be an efficient approach to measure connectedness in the financial system. Scholars have in-

troduced several theoretical models on financial networks (Allen and Babus, 2009, Elliott et al.,

2014, Acemoglu et al., 2015) and inference approaches (Billio et al., 2012, Diebold and Yılmaz,

2014, Ahelegbey et al., 2016, Billio et al., 2016, Demirer et al., 2017, Korobilis and Yilmaz, 2018,

Billio et al., 2018, Barigozzi and Brownlees, 2019, Bianchi et al., 2019, Billio et al., 2019).

Regarding the recent literature, Billio et al. (2012) propose pairwise Granger causality tests

to describe causal linkages among firms’ returns. This approach is very flexible since it can be

virtually applied to datasets of any dimension, but at the same time, the transmission mechanism

(linkages) may be not correctly identified given that shocks are not jointly considered. As noted

in Acharya et al. (2012), it is not possible to distinguish if one firm Granger causes another one

or a third one is causing both. In this regard, multivariate models such as Vector Autoregressive

(VAR) represent one of the best ways to describe structural shocks in a given system. For

instance, Ahelegbey et al. (2016) show that VAR models provide a better representation of the

linkages than Granger-causality tests. Nevertheless, the classical multivariate framework suffers

of the well known course of dimensionality which limits the range of applicability to relatively

small cross–sectional sizes. To overcome this issue, shrinkage and selection methodologies have

been proposed to deal with high–dimensional data. The first and the most popular is the least

absolute shrinkage and selection operator (LASSO) introduced by Tibshirani (1996) which can

simultaneously perform parameters estimation and selection in regression models. After that,

further literature introduced alternative shrinkage methods such as the least angle regression

(LARS) of Efron et al. (2004), the boosting of Bühlmann (2006), the adaptive LASSO of Zou

(2006) and the group LASSO of Yuan and Lin (2006). In a multivariate context, sparse methods

that automatically shrink to zero the–off diagonal elements of the variance–covariance matrix

are crucial because they reduce the number of estimated parameters. Several works related

to sparse estimation of either the variance–covariance matrix or its inverse are available in

literature. Friedman et al. (2008) propose a fast algorithm based on a coordinate–wise updating

scheme in order to estimate a sparse graph using the least absolute shrinkage and selection

operator (LASSO) `1–penalty of Tibshirani (1996). Meinshausen and Bühlmann (2006) present a

method for neighbourhood selection using the LASSO `1–penalty as an alternative to covariance

selection for Gaussian graphical models where the number of observations is less than the number
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of variables. Gao and Massam (2015) estimate the variance–covariance matrix of symmetry–

constrained Gaussian models using three different `1–type penalty functions, i.e., the LASSO,

the smoothly clipped absolute deviation (SCAD) of Fan and Li (2001) and the minimax concave

penalty (MCP) of Zhang (2010). Bien and Tibshirani (2011) propose a penalised version of

the log–likelihood function, using the LASSO penalty, in order to estimate a sparse variance–

covariance matrix of a multivariate Gaussian distribution. Rothman et al. (2010) introduced the

Multivariate Regression with Covariance Estimation (MRCE), a two–stage iterative procedure

to achieve spare estimation of both the regression parameters and the variance–covariance matrix

within a multivariate regression framework that can be easily adapted to stochastic regressors

in a VAR approach. From a Bayesian perspective, George and McCulloch (1993) proposed

the Stochastic Search Variable Selection (SSVS) approach and a Gibbs sampler algorithm that

enable to simulate draws from the posterior distribution of model parameters augmented by an

indicator that includes the selected covariates. The SSVS method advocated by George and

McCulloch (1993) has been gaining popularity as with Li and Zhang (2010) and Scheipl et al.

(2012), although it suffers from a heavy computational burden.

Selection and shrinkage operators have been also adopted in the estimation of financial networks.

For example, Demirer et al. (2017) apply the variance decomposition approach of Diebold and

Yılmaz (2014) to estimate a global bank network which includes the world’s top 150 banks during

the period from 2003 to 2014. More recently, Barigozzi and Brownlees (2019) propose the NETS

algorithm based on LASSO and model a large VAR (90 US blue chips across different industries)

where the autoregressive matrices and the inverse covariance matrix of the innovations are sparse.

Our paper aims to contribute to this stream of literature. We propose a shrinkage and se-

lection methodology specifically designed for network inference with high–dimensional data and

present a linear regression model with Spike–and–Slab prior on the coefficients. The methodol-

ogy is then routinely adapted to estimate a high–dimensional VAR equation–by–equation, where

the dimension of regressors is larger than the number of observations, preventing the estimation

via the joint likelihood. Specifically, we consider a regularised linear regression model with the

Spike–and–Slab prior on the coefficients (see, e.g., Mitchell and Beauchamp, 1988, George and

McCulloch, 1993, 1997) which consists of a finite mixture of two Gaussian distributions having

the same mean and different variances. The marginal inclusion probability of each regressor is

obtained by averaging the posterior draws of the mixture indicator that refer to the component

with higher variance. Therefore, a Markov chain Monte Carlo (MCMC) sampling algorithm

should be implemented that efficiently simulates from the complete set of full conditional dis-

tributions. Unfortunately, simulating from the space of regressors augmented by the inclusion

indicators is unsuitable where VAR parameters are routinely estimated equation–by–equation.

Indeed, the large dimension of the state space augmented by the regressor indicators requires
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high computational costs for approximating the posterior via MCMC for each equation esti-

mation. To avoid the computational burden of MCMC methods we instead pursue the idea of

Roǒková and George (2014) to develop a fast and efficient Expectation–Maximisation (EM) algo-

rithm (Dempster et al., 1977) in order to compute the Maximum–a–Posteriori (MaP) of a linear

regression model with Spike–and–Slab prior. The resulting Stochastic Search Variable Selection

Expectation–Maximisation (SSVS–EM) algorithm provides the MaP of the inclusion probability

of each regressor, avoiding the computation of the whole posterior distribution. Roǒková and

George (2014) show that the SSVS–EM algorithm is an accurate deterministic approach with

enormous computational savings, and has the potential to be a key player for variable selection

problems. Here, we extend the SVSS–EM approach to the case where the error terms of the

Gaussian linear regression model are heteroscedastic by adding an ARCH–type equation (Engle,

1982, Engle and Bollerslev, 1986) to model the dynamic evolution of the variance. Modelling the

conditional variance is a relevant issue when dealing with dependent data that cannot be stan-

dardised before the application of the SVSS method. From an algorithmic perspective, including

a dynamic variance results in a set additional parameters that enters nonlinearly the likelihood

equation prevents an explicit analytical solution for the maximisation step of the EM algorithm.

Therefore, we deliver an approximate–EM algorithm where the likelihood contribution of the

ARCH parameters is approximated around the current values by a Gaussian distribution leading

to optimal updates of the parameters. In a different context, an approximated EM algorithm has

been proposed by Rizopoulos et al. (2009) to approximate the expectation step in longitudinal

survival models.

The proposed model can be interpreted as a VAR model with a diagonal variance–covariance

matrix where shocks are instantaneously uncorrelated and the number of covariates is strictly

larger than the number of observations. We aim to improve the identification of the relationship

(linkages) among the financial firms by including a very large number of institutions in each

equation by maintaining de facto the flexibility of the univariate framework. Moreover, the

model accounts for two sets of covariates. The first set contains the predetermined variables

which cannot be penalised: these variables are the autoregressive component for the persistence

of the given financial institution (the dependent variable) and a set of common factors which

model the cross–section correlation in the residuals to ensure independence. The second set of

variables contains all the (lagged) financial institutions in the system that can be included at

a given probability. The inference of the network is straightforward since the financial linkages

are derived by the (posterior) inclusion probability of a given institution. Consequently, the

weighted directed network is obtained through the adjacency matrix which is built “row by

row”, that is equation by equation, using for each firm the posterior inclusion probabilities of

all the others in the financial system.
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In the empirical application, we consider the weekly closing price series of 1248 world fi-

nancial firms (banks, insurances, brokers and other financial services), both active and dead

from 29 December 2000 to 6 October 2017. We estimate the dynamic financial network using

a rolling window approach and then focus on the connectedness over time by analysing the

network out-degrees. Usually, the presence of heterogeneity in the financial linkages results in

scale–free networks having the well-known heavy-tailed property of the degree distribution. This

indicates a majority (minority) group of firms having a low (high) number of connections (see

Barabási and Albert, 1999, Barabási and Bonabeau, 2003, Boss et al., 2004). In this respect,

we make use of the Generalized Pareto distribution to model the shape of the out–degrees dis-

tribution. The variation over time of the shape parameter of the distribution can represent a

signal of structural changes in network connectedness detecting whether there is a mutation

on the number of network hubs (i.e., nodes with higher degrees). Interestingly, the dynamic

of this hubs indicator exhibits the typical behaviour of financial stress indicators and promptly

reacts during significant economic and financial events. Given its persistence over time, we select

the MSCI World Financials Index as a proxy for the considered global market and show, after

controlling for volatility and other robustness checks, that it represents a significant predictor

of market returns at the first lag (one week) and the fourth lag (one month). These findings

demonstrate that the proposed approach can be successfully applied to the estimation of large

financial networks and can be used to construct real time financial stress indicators.

The remaining of the paper is structured as follows. Section 2 introduces and formalises the

main problem we address in this paper, namely the identification and estimation of large dimen-

sional networks using dynamic regression models. Section 3 introduces the sparse heteroscedastic

linear regression approach used to estimate the network and the SSVS–EM algorithm that uses

a Spike–and–Slab prior to select the relevant coefficients. Section 4 illustrates the empirical

analysis and our major findings, and Section 5 concludes the paper.

2 General framework for network estimation

In this Section, we introduce the general framework we propose for the network inference using

the Vector Autoregressive (VAR) approach. The distinguishing feature of the proposed model

which is relevant for network estimation, is that it deals with two different sets of covariates.

The first set contains the predetermined variables which cannot be excluded from the regression

such as the autoregressive component of the considered financial firms, that is the dependent

variable in each equation of the system, and a set of common factors which account for the

cross–section correlation of the residuals which lead to uncorrelated error terms. The second

set of variables contains all the (lagged) returns of all the other financial firms in the system
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that can be included in the regression model with a given probability. To this end, we develop

a framework for the equation–by–equation estimation of the VAR parameters using a Bayesian

sparse heteroscedastic linear regression method. An additional latent indicator having a Spike–

and–Slab prior distribution is included to probabilistically assess the relevance of each institution

in the network. The next Section describes the VAR model specification and its link with the

proposed equation–by–equation estimation approach.

2.1 VAR model specification

Consider the random vector yt = (y1,t, y2,t, . . . , yN,t)
ᵀ ∈ RN collecting the cross–section of log–

returns yi,t ∈ R, i = 1, 2, . . . , N of N financial institutions at times t = 1, 2, . . . , T . We consider

the following VAR model which expresses the cross–section returns of all the institutions at time

t, yt, as a function of the lagged returns:

yt = µ+

k∑
j=1

Φjyt−j + ηt, t = 2, 3, . . . , T, (1)

where µ ∈ RN is a vector of constant terms, Φj is the (N ×N) autoregressive matrix of

loading parameters at the j–th lag and ηt ∼ N (0,Ση) is the vector of error terms that are

assumed to follow a multivariate Gaussian distribution with variance–covariance matrix Ση.

As explained in the Introduction and below in Section 4, the cross–sectional dimension of the

vector in our application is very large, i.e., N � 100 preventing the estimation of the VAR

parameters (Φj , j = 1, 2, . . . , k,Ση) using likelihood–based procedures. Nevertheless the VAR

specification in equation (1) can be viewed as a seemingly unrelated regressions (SUR) model

where each equation shares the same set of covariates. Therefore, the autoregressive matrices Φj

for j = 1, 2, . . . , p in equation (1) can be consistently estimated using an equation–by–equation

strategy through ordinary least squares. Unfortunately, the previous approach assumes that the

off–diagonal elements in the covariance matrix of the error term ηt are zero, thereby leading

to a biased parameters estimate. To account for cross–sectional correlation in the residuals

while retaining a tractable equation–by–equation approach, we model ηt through an f × 1

vector of common factors ft. One of the advantages with the inclusion of a vector of common

factors in equation (1) relies on the ability to distinguish the systematic component measured

by the factors and the idiosyncratic one related to the financial firm. Furthermore, the vector

of common factors can be either observable or latent leading to fixed–effects or random–effects

regression models, respectively. In this paper, we focus on the former case for two reasons.

First, observed factors have a clear economic interpretation. Second, given the high dimension

of the regressors space, observable factors are preferable in our case since they lead to a more
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parsimonious representation of the common components. Accordingly, the correlation structure

of ηt in equation (1) is accounted for by including in the VAR specification a set of common

factors ft with the following specification:

ηt = Fft + εt, t = 2, 3, . . . , T, (2)

where F is a matrix of dimension (N × f) of factor loadings and εt ∼ N (0,Σε) contains the

idiosyncratic components of ηt which are mutually uncorrelated such that Σε = diag
{
σε1,1,

σε2,2, . . . , σ
ε
N,N

}
is a diagonal matrix. Therefore, the following factor VAR model is obtained

through equations (1) and (2):

yt = µ+

k∑
j=1

Φjyt−j + Fft + εt, t = 2, 3, . . . , T. (3)

Without loss of generality, the VAR model in equation (3) can be linearly estimated equation–

by–equation since the error terms εt are uncorrelated by construction, while maintaining a

certain degree of heteroscedasticity that characterises financial returns (see, e.g., Francq and

Zaköıan, 2010). In this respect, the estimation equation–by–equation approach detailed below

also accounts for the time–varying nature of the second moment of the returns’ distribution

that would highly influence the efficiency of the parameters estimate. Specifically, we assume

an ARCH–type process (Engle, 1982, Bollerslev, 1986) for the variance of the innovations εi,t

in each regression equation. To highlight the estimation strategy, the proposed VAR model in

equation (3) is written in terms of the i–th equation, that is, equation–by–equation:

yi,t = µi +

k∑
l=1

%i,lyi,t−l + xᵀ
i,tβi + Fift + h

1/2
i,t εi,t, εi,t

i.i.d∼ N (0, 1) , (4)

hi,t = γi,h + αi,hε
2
i,t−1 + βhhi,t−1, i = 1, 2, . . . , N, t = 2, 3, . . . , T, (5)

where µi is the intercept, yi,t−l is the i–th autoregressive component, xi,t =
(
yᵀ
−i,t−1,y

ᵀ
−i,t−2, . . . ,

yᵀ
−i,t−k

)ᵀ
is the k(N − 1) × 1 vector of the lagged endogenous variables without the i–th el-

ement, and Fi is the i–th row vector of the factor loadings matrix. Equation (5) specifies a

weekly stationary GARCH(1,1) process of Bollerslev (1986) for the conditional variance terms

hi,t ∈ R+ with parameters γh > 0, αh ≥ 0 and βh ≥ 0 and αh + βh < 1. We collect the GARCH

parameters in the vector ψ = (γh, αh, βh). The main purpose of including the GARCH dynamics

for the conditional variance in the equation–by–equation approach is to increase the statistical

efficiency of the estimated regression effects (%i,1, %i,2, . . . , %i,k,β
ᵀ
i ,Fi, ) while retaining a simple,
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effective and computationally tractable model. During the years, financial econometrics litera-

ture introduced several GARCH specifications to account for financial stylised facts such as the

asymmetric response of volatility to past shocks (see survey examples: Hentschel et al., 1995,

Engle, 2001, Francq and Zaköıan, 2010). In several cases, those models represent an improve-

ment in volatility forecasting (i.e., Hansen and Lunde, 2005, Awartani and Corradi, 2005) which

clearly is not the objective of this paper. Therefore, although more sophisticated models are

appealing, we opt for the simpler yet parsimonious standard GARCH model that highly reduces

the computational time. Anyhow, other GARCH specifications can be easily adapted to the

estimation methodology proposed below.

The heteroscedastic Gaussian linear regression framework defined in equations (4)–(5) is

a statistical tool for performing estimation of the parameters of the VAR model. Despite its

usefulness for solving the curse of the dimensionality problem for high–dimensional VAR estima-

tion, the equation–by–equation regression framework requires repeatedly solving the estimation

issue which increases the computational burden. Moreover, usually the number of observations

T is smaller than the number of covariates. Previous considerations, as well as the need of a

probabilistic network structure that links financial institutions as vertexes, motivate the use of

the Bayesian approach to variable selection. Indeed, the Bayesian approach here provides a

valid inferential tool for performing both parameters estimation and model selection where the

latter task aims to properly define the structure of the network. This approach requires the

specification of a prior distribution for all the parameters. We deal with prior formulation in

Section 3.1. However, for what follows, the prior specification for the regression parameters βi in

equation (4) is particularly crucial. For those parameters we introduce a Spike–and–Slab prior

(Mitchell and Beauchamp, 1988, George and McCulloch, 1993, 1997), which consists of a finite

mixture of two Gaussian distributions with different variances. The Spike–and–Slab approach

automatically delivers the marginal inclusion probability of each regressor thereby providing a

natural framework for building the network structure which is described in the next Section (2.2).

Bayesian methods usually involve computationally intensive simulation methods to numerically

approximate the posterior distribution. To avoid the computational burden of MCMC methods,

we pursue the idea of Roǒková and George (2014) for developing a fast and efficient Expectation–

Maximisation (EM) algorithm (Dempster et al., 1977) to compute the Maximum–a–Posteriori

(MaP). The resulting Stochastic Search Variable Selection Expectation–Maximisation (SSVS–

EM) algorithm provides the MaP of the inclusion probability of each regressor avoiding the

computation of the whole posterior distribution. In Section 3, we introduce an Expectation–

Maximisation algorithm for efficiently dealing with Maximum–a–Posteriori estimation of the

relevant regression parameters as well as the parameters driving the variance of the error term.

The postulated Spike–and–Slab prior on the endogenous regressors parameters βi featuring the
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presence of irrelevant regressors, i.e., βj = 0 for some j in a probabilistic way, while retaining

the common factor structure zt.

2.2 Network specification

For the sake of clarity, we rewrite the model in equation (4) to highlight its components in terms

of network linkages. Indeed, the regression framework can be further simplified by considering

that the regressors in the right-hand side contains the set of lagged variables denoted by xi,t

and the observed factors zt = (yi,t−1, yi,t−2, . . . , yi,t−k, f
ᵀ
t )

ᵀ
. This latter set of variables is always

included in the i–th regression while the former are selected by including a binary random vector

γi of dimension k (N − 1) with γi,j = 1 if the j–th covariate xi,j is included as an explanatory

variable in the i–th regression model and 0 otherwise.

Therefore, using standard notation, we include the selection variable γi,j ∼ Ber (ωi) in the

previous specification, leading to the following representation:

yi,t = µi +

k(N−1)∑
j=1
j 6=i

γi,jxi,j,t−1βi,j + zᵀtϕi + h
1/2
i,t εi,t, εi,t ∼ N (0, 1) , (6)

hi,t = γi,h + αi,hε
2
i,t−1 + βhhi,t−1, (7)

for i = 1, 2, . . . , N . The regression term ϕi = (%i,1, %i,2, . . . , %i,k, f
ᵀ
t )

ᵀ
refers to the common

factor components which are always included by default in the model. The heteroscedastic

regression framework specified in equations (6)–(7) can be used to infer a probabilistic network

over the set of nodes V = {1, 2, . . . , N} with directed edges between nodes represented through

a N–dimensional adjacency matrix

A =



0 a1,2 · · · a1,j−1 a1,j · · · a1,N

a2,1 0 · · · · · · · · · · · ·
...

... · · · . . . · · · · · · · · ·
...

... · · · · · · . . . · · · · · ·
...

ai,1 · · · · · · ai,j−1 ai,j · · · ai,N
... · · · · · · · · · · · · . . .

...

aN,1 · · · · · · aN,j−1 aN,j · · · 0


. (8)

The element ai,j = g (π̂i,j) is a function of the estimated inclusion probabilities

π̂i,j = P̂ (γi,j = 1 | yi,Xi,Zi, µi,β
ᵀ
i ,ϕ

ᵀ
i , ψ

ᵀ) , (9)
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where yi = (yi,1, yi,2, . . . , yi,T )ᵀ, Xi = (xi,1,xi,2, . . . ,xi,T )ᵀ and Zi = (zi,1, zi,2, . . . , zi,T )ᵀ denote

the set of observations used to estimate the parameters (µi,β
ᵀ
i ,ϕ

ᵀ
i , ψ

ᵀ)
ᵀ
.

The adjacency matrix A is symmetric and describes a weighted directed network since the

linkages are defined in terms of inclusion probabilities and thus, the element ai,j indicates a

(weighted) edge from j to i with i, j ∈ V = {1, 2, . . . , N}. An alternative characterisation of the

network is possible with the use of a threshold c ∈ (0, 1) where the element ai,j of the adjacency

matrix is defined as g (π̂i,j) = 1(c,1) (π̂i,j), with 1(·) (x) denoting the indicator function. In such

case, there is a binary relationship: if π̂i,j > c, ai,j is equal to 1 and 0 otherwise. This can be

further extend to multiple thresholds in order to have different linkage categories which depend

on the probability weight of each edge (i.e., low–medium–high connectedness).

3 Heteroscedastic Spike–and–Slab SSVS–EM

In this section, we detail the EM algorithm to estimate the regression parameters of the model

specified in equations (6)–(7), as well as their inclusion probabilities. For notational convenience,

throughout this section we will suppress the dependence on the institution indicator i and assume

β ∈ Rp and ϕ ∈ Rq, with p = k(N − 1) and q = k + f . The prior distribution for the inclusion

parameters γj , j = 1, 2, . . . , p as well as the other parameters µ,βᵀ,ϕᵀ, γh, αh, βh are specified in

the next section. Section 3.2 introduces the EM algorithm that efficiently deals with the SSVS

problem, while Section A.3 deals with the relevant problem of updating the GARCH parameters.

3.1 Prior specification

Using standard notation, let γ be the p–vector where γj = 1 if the j–th covariate xj is included

as an explanatory variable in the regression model and γj = 0 otherwise. Conditional on

γj ∼ Ber (ω), the adaptive prior distribution for the remaining parameters are as follows:

µ ∼ N1

(
µ | µµ, σ2µ

)
(10)

(β | γ) ∼ Np (β | 0,Σβ) (11)

ϕ ∼ Nq
(
ϕ | µϕ,Σϕ

)
(12)

Σβ = diag {b1, b2, . . . , bp} (13)

bj = (1− γj) ν0 + γjν1,j , 0 ≤ ν0 < min{ν1}, j = 1, 2, . . . , p (14)

ν1 ∼
p∏
j=1

νb1,j (1− ν1,j)−a−b−2

Be (a+ 1, b+ 1)
1(0,∞) (ν1,j) (15)
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ω ∼ ωa−1 (1− ω)b−1

Be (a, b)
(16)

γh ∼ N1

(
γh | µγ , σ2γ

)
1(0,∞) (γh) (17)

αh, βh ∼ N1

(
αh | µα, σ2α

)
× N1

(
βh | µβ, σ2β

)
× 1S (αh, βh) , (18)

where b = 0, a ∈ (−1, 0] (see, e.g., Cui and George, 2008, Liang et al., 2008) and S denotes the

simplex αh ≥ 0, βh ≥ 0 and αh + βh < 1 to ensure weekly stationarity of the process (see, e.g.,

Francq and Zaköıan, 2010). In equations (10)–(18), Nd (·) denotes the Gaussian distributions of

dimension d ∈ Z? where Z? denotes the set of positive integers, while Ber (·) and Be (·) denote

the Bernoulli and Beta distributions, respectively. Hereafter, ϑ = (µ,βᵀ,ϕᵀ, ω,ν1, ψ
ᵀ)ᵀ collects

all the unknown parameters that need to be estimated.

The prior structure in equations (10) and (12) implicitly assumes that the constant term and

the covariates zt, which correspond to the factors common to the whole system of VAR equa-

tions defined in the previous section, are always included as covariates. Therefore, we assume a

Gaussian and multivariate Gaussian distribution, respectively. Regarding the prior distribution

for the GARCH parameters ψ = (γh, αh, βh)ᵀ a natural solution is the independent Gaussian

truncated over the simplex S defined in equations (17)–(18) (see, e.g., Ardia, 2008). Equations

(11) and (13)–(16) specify a hierarchical Spike–and–Slab prior for the vector of regressors β.

The Spike–and–Slab prior (Mitchell and Beauchamp, 1988, George and McCulloch, 1993, 1997)

is a finite mixture of two zero–mean Gaussian distributions and different variance, where the first

component, with smaller variance, refers to the spike component while the second component,

with greater variance, refers to the slab component. Therefore, the covariates that are excluded

from the regression are assigned to the spike distribution, while the slab component accounts

for those covariates that are included in the regression. The auxiliary γ vector of mixture in-

dicator accounts for the inclusion of regressors enabling the data–augmentation approach for

the Spike–and–Slab mixture. Conditionally on γ, the joint prior distribution of β is Gaussian

with mean zero and diagonal variance–covariance matrix Σβ as specified in equation (12). The

structure of the variance–covariance matrix in equations (13)–(14) allows the identification of

the mixture components via the vector of prior variances (ν0,ν
ᵀ
1)

ᵀ
. Even though the ν0 in the

spike distribution is typically set to be zero in the literature, such as in Brown et al. (1998) and

Panagiotelis and Smith (2008), we follow Roǒková and George (2014) and consider small but

positive values for ν0 to exclude unimportant nonzero effects. As suggested by Roǒková and

George (2014), we impose a heavy–tailed prior for ν1 in equation (15) which is also known as

a Pearson Type VI or Beta–prime distribution. The prior distribution specified in equations

(14)–(15) is adaptive in the sense that it introduces a parameter specifically tailored to each

regressor. Moreover, the hierarchical formulation allows posterior data–driven inference on ν1.
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The prior specification is completed by assuming a distribution for the hyper–parameter ω in

equation (16).

The joint prior distribution specified in equations (10)–(18) depends on the following set of

hyper–parameters
(
µµ, σ

2
µ,µϕ,Σϕ, ν0, a, b, µγ , σ

2
γ , µα, σ

2
α, µβ, σ

2
β

)
that should be chosen to per-

form model estimation. As concerns the prior for the constant µ and the regressors that are

always included ϕ we choose diffuse parameters, i.e., µµ = 0, σ2µ = 100 and µϕ = 0 × ιq and

Σϕ = 100× Iq where ιq denotes a column vector of unit element of dimension q and Iq denotes

the identity matrix of order q. As discussed above, b = 0 while a common choice for the param-

eter a is a = −3
4 , see Maruyama and George (2011). The hyper–parameter ν0 is crucial because

it is a tuning parameter that regulates the number of covariates that are set to zero. It can be

either fixed to a small positive value (e.g., ν0 = 10−6) or it can be selected by cross–validation.

Although more computationally intensive we opt for the latter empirical Bayes approach, (see,

e.g., Park and Casella, 2008, Cui and George, 2008, for an extensive treatment of an empirical

approach to tailor hyper–parameters in Bayesian sparse regression models). The last group of

hyper–parameters refers to the GARCH parameters. Following Ardia (2008), we set the means

and the variances to µγ = µα = µβ = 0 and σ2γ = σ2α = σ2β = 100, respectively.

3.2 The SSVS–EM algorithm

Hereafter, we focus on the EM algorithm which has been extensively applied in the context

of finite mixture models, (see, e.g., McLachlan and Peel, 2000). For the covariates selection,

the mixture representation originates from the Spike–and–Slab prior distribution placed on the

regressor parameters in equations (10)–(18). To account for the missing information on the

covariates included in the regression model, the vector of observations {yt,xt, zt} is regarded

as being incomplete and the vector of indicators γt, that relies on the Spike–and–Slab mixture

representation, is introduced as latent parameter.

This leads to the following complete–data log–likelihood:

logLc (ϑ) = −T + p+ q + 3

2
log (2π)− 1

2

T∑
t=1

log (ht)−
1

2

T∑
t=1

‖yt − µ− xᵀ
tβ − zᵀtϕ‖22
ht

− 1

2

p∑
j=1

log (bj)−
1

2

p∑
j=1

β2j
bj

+ |γ| log

(
ω

1− ω

)
+ p log (1− ω)

− (a+ b+ 2)

p∑
j=1

log (1 + ν1,j) + b

p∑
j=1

log (ν1,j)−
p∑
j=1

log (Be (a+ 1, b+ 1))
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+ (a− 1) log (ω) + (b− 1) log (1− ω)− log (Be (a, b))− 1

2
log
(
σ2γ
)

− 1

2

(γh − µγ)2

σ2γ
− 1

2
log
(
σ2α
)
− 1

2

(αh − µα)2

σ2α
− 1

2
log
(
σ2β
)
− 1

2

(βh − µβ)2

σ2β

− f + 3

2
log (2π)− 1

2
log |Σϕ| −

1

2

(
ϕ− µϕ

)ᵀ
Σ−1ϕ

(
ϕ− µϕ

)
, (19)

where ‖ · ‖22 denotes the squared L2–norm.

The EM algorithm consists of two major steps, one for expectation (E–step) and one for

maximisation (M–step), see McLachlan and Krishnan (2007). At the (m+ 1)–th iteration the

EM algorithm proceeds as follows:

(i) E–step: computes the conditional expectation of the complete–data log–likelihood (19)

given the observed data {yt,xt, zt}Tt=1 and the m–th iteration parameters updates ϑ̂
(m)

Q
(
ϑ, ϑ̂

(m)
)

= E
ϑ̂
(m)

[
logLc (ϑ) | {yt,xt, zt}Tt=1

]
, (20)

where the expectation in equation (20) is taken with respect the conditional distribution of

the latent inclusion indicator γ given the observed variables {yt,xt, zt}Tt=1 and the current

value of the parameters ϑ̂
(m)

;

(ii) M–step: updates the parameters ϑ by maximising equation (20) with respect to ϑ, as

follows:

ϑ̂
(m+1)

= arg max
ϑ
Q
(
ϑ, ϑ̂

(m)
)
.

Given the GARCH parameters, the nonlinear regression model does not admit a closed form

update for the M–step, and thus we resort to a Conditional Expectation Maximisation approach

(CEM) (see McLachlan and Krishnan, 2007). The Heteroscedastic SSVS–EM algorithm included

in Algorithm 1 describes the main steps for the linear regression model with Spike–and–Slab

prior. The full derivation of the explicit EM algorithm is reported in the Appendix A.1.

4 Empirical Analysis

In this Section, we apply the proposed model to the context of the global financial system. The

analysed period goes from 29 December 2000 to 6 October 2017. The data have been downloaded

from Thomson Reuters Eikon. As commonly used in literature (Billio et al., 2012, Diebold and

Yılmaz, 2014, Demirer et al., 2017), we make use of the rolling window approach to obtain a

dynamic network over time. Therefore, the networks are estimated using a window with length
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Algorithm 1 Heteroscedastic Stochastic Search Variable Selection EM

Given the value of the parameters at the m–th iteration, ϑ̂
(m)

as well as the values of the conditional

variances
{
ĥ
(m)
t

}T
t=1

, the next iteration of the SSVS–EM algorithm update the parameters as follows:

1. update the inclusion indicators: γ̂
(m)
j = 1

1+d̂
(m)
j

, where

d̂
(m)
j =

√
ν̂
(m)
1,j

ν0
exp


(
β̂mj

)2
2

(
1

ν̂
(m)
1,j

− 1

ν0

) 1− ω̂(m)

ω̂(m)
,

for j = 1, 2, . . . , p;

2. update the latent factors:

b̂−1
j

(m)

=
1

ν1,j
γ̂
(m)
j +

1

ν0

(
1− γ̂(m)

j

)
̂log (bj)

(m)
= log (ν1,j) γ̂

(m)
j + log (ν0)

(
1− γ̂(m)

j

)
,

3. update the regression parameters ϑ? = (µ,βᵀ,ϕᵀ)
ᵀ
:

ϑ̂
(m+1)

? = µϑ?
+ K̂

(m)
?

(
y −X?µϑ?

)
ω̂(m+1) =

1

p+ b+ a− 2

 p∑
j=1

γ̂
(m)
j + a− 1


ν̂
(m+1)
1 = −

(
Â(m) + B̂(m) + b

)
+ ∆̂(m)

2
(
B̂(m) − a− 2

) ,

where K̂
(m)
? , ∆̂

(m)
, B̂(m), Â(m) are defined in equations (25), (29), (30), (31) provided in

Appendix A, and µϑ?
=
(
µµ,0

ᵀ,µᵀ
ϕ

)ᵀ
;

4. update the GARCH parameters
̂̃
ψ
(m+1)

h =
(
γ̂
(m+1)
h , α̂

(m+1)
h

)ᵀ
and β̂

(m+1)
h :̂̃

ψ
(m+1)

h =
(
LᵀΛ−1L + Σ−1

ψ̃h

)−1 (
LᵀΛ−1ε+ Σ−1

ψ̃h
µψ̃h

)
β̂
(m+1)
h =

(
∇ᵀ
βΛ−1∇β +

1

σ2
βh

)−1(
∇ᵀ
βΛ−1r +

µβh

σ2
βh

)
,

where L, Λ, r and ∇β are defined in equations (66)–(69) of Appendix A.

of 104 weekly observations (2 stock market years) for a total of 772 adjacency matrices.1 For each

window the adjacency matrix A ≡ A(t) is estimated using inclusion probabilities π̂i,j ≡ π̂i,j(t)

defined in equation (8) and (9). The prior parameters are chosen as described in Section 3.1.

Furthermore, to cross–validate the tuning parameter ν0, we implement a warm–start technique

which uses the current solution of ν0 as the initial value for the next one (Friedman et al., 2007,

1The estimations have been parallelised and implemented in Matlab on the LOEWE–CSC cluster using 100
cores. The computation has required approximately 72 hours.
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2010, Zhao et al., 2018).

4.1 The data

Financial firms. We consider the weekly closing price series (friday) of 1248 world financial

firms (banks, brokers insurances and other financial services). We account for both active and

dead financial firms in order to deal with delisting in stocks markets and avoid the survivorship

bias (Shumway, 1997). We report the number of financial firms per country and category in Table

5 of Appendix B.2 Each estimation window contains financial firms with at least a number of

observations equal to its size. Figure 1 reports the cardinality of the dataset (nt) over time with

a minimum (maximum) of selected firms equal to 766 (1178). Therefore, we have a time–varying

dataset where the number of covariates are strictly larger then the number of observations.

Common observed factors. We select 44 world financial variables which may exert an

impact on the cross–section correlation as described in equation 2. These variables include:

- The Fama and French five global factors (Fama and French, 2015): i) Mkt–Rf (the mar-

ket’s excess return); ii) SMB (Small Minus Big); iii) HML (High Minus Low); iv) RMW

(Robust Minus Weak) and v) CMA (Conservative Minus Aggressive)3.

- Log–returns on MSCI market indices: Global, United States, Europe, China, Japan, Hong

Kong and Russia. (Source: Bloomberg).

- Changes volatility indices: VIX, EUROSTOXX 50 Volatility Index (V2X), Nikkei Volatil-

ity Index (VNKY) and the Hong Kong Volatility Index (VHSI). (Source: Bloomberg).

- Log–returns on bilateral spot exchange rate. The rates are expressed in units of foreign

currency per USD and include: Australia, Euro, China, Japan, Hong Kong, Norway,

Russia and Sweden. (Source: Bloomberg).

- Log–returns on 10 Years Government bond indices: Austria, Australia, Bulgaria, China,

Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, Netherlands, Norway,

Portugal, Spain, United Kingdom and United States. (Source: Eikon/Datastream).

2The dataset is part of the earliness.eu project (H2020) and of the SAFE Systemic Risk Lab, Goethe University
Frankfurt.

3The Fama and French five factors makes use of six value–weight portfolios formed on size
and book–to–market, the six value–weight portfolios formed on size and operating profitability, and
the six value–weight portfolios formed on size and investment. For further information, see
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f 5 factors 2x3.html.
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Figure 1: Cross–sectional sample size (nt) of the considered financial institutions over time.

- The TED spread (3–month USD LIBOR minus the 3–month US Treasury bill yield) as a

measure of counterparty risk and liquidity of the US interbank market and log-returns on

WTI Crude oil.

4.2 Network estimates

In this application, we consider the binary adjacency matrix case and thus select the regressors

with a probability of inclusion, π̂i,j , higher than a given threshold parameter, c. Roǒková

and George (2014) suggest considering threshold values larger than 0.5 to have more sparsified

models. In this respect, we set c equal to 0.8 to proxy highly likely financial linkages among

firms. Figure 2 reports the cross–sectional distribution over time for the number of selected

regressors of each financial firm (left panel) and the cross–sectional distribution over time of

the estimated betas for the financial firms (right panel). Looking at the left panel, the cross–

sectional distribution of the selected regressors provides a first indication about the distribution

of the ingoing connections among the financial firms in the system. Interestingly, there is a

shift on the the cross–sectional distribution during the 2007–2009 period in occurrence of the

Global financial crisis which could indicate a structural change in the network connectedness.

In this regard, we report in Table 1 the descriptive statistics for the cross–sectional distributions

of the selected regressors per year. The values for the mean are larger than the values of

the median in all of the considered period which suggests that the cross–sectional distribution

through time could be right–skewed. As shown graphically, there is a decline of the mean

(first column) and the median (second column) during the global financial crisis, even if the

latter is less pronounced than the former. For a given financial firm, a decrease of the selected

regressors on average indicates a lower number of causal relationships, a signal that the shock

transmission mechanism is primarily driven by fewer institutions. The maximum difference
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between the mean and the median is during 2009–2010 and indicates that the distribution is

strongly right–skewed in the period which suggests the presence of a minority of nodes with a

large number of connections. Conversely, the standard deviation (third column) increases by

42% in 2007 indicating a greater dispersion among the number of ingoing connections. This can

be also viewed on the quantiles at 10% (fourth column) and 90% (fifth column) which indicate

a widening of the distribution during the same period (2009–2010). The right panel in Figure

2 shows a bimodal cross–sectional distribution for the betas with a mass concentration around

positive and negative values equal to 0.15 and −0.15. The descriptive statistics are reported in

Table 2 and show that the mean, median and standard deviation for the betas are substantially

stable during the whole period.

To analyse the shock transmission mechanism, we focus on the outgoing linkages in the

network over time. The out–degree measure, douti,t , is defined as

douti,t =

nt∑
i=1

aij,t,

where aij,t is the element 1(c,1) (π̂i,j) of the adjacency matrix at time t. Figure 3 reports the

cross–sectional out–degree distribution over time for the considered financial firms. Similarly

as discussed for the selected regressors, the cross–sectional out–degree distribution over time

is right–skewed indicating the presence of a majority of nodes having low out–degrees and a

minority also know as financial hubs with high out–degrees. This is a well known property of

scale–free networks where the degree distribution is usually heavy tailed (Barabási and Albert,

1999) and follows a power tail distribution, a characteristic also present in financial networks

(see Iori et al., 2008, Schweitzer et al., 2009). From a financial stability perspective, financial

hubs are key players on the shock transmission in the system given their central role played in

the network (Boss et al., 2004, Haldane, 2013). As shown in Billio et al. (2012) and Diebold and

Yılmaz (2014), changes in network connectedness, measured by the total density, the spillover

index and other network indicators, can provide valuable signals about periods of stress and

instability in the financial system.

In this respect, we consider the cross–sectional variation of the out–degrees over time and

analyse the shape of the distribution as a potential indicator of market stress. We make use

of the Generalized Pareto Distribution (GPD) (Pickands, 1975) which is particularly suitable

for heavy–tailed distributions and is also used to model network degrees (Jordan et al., 2004,

Barabási, 2016).
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Figure 2: Cross–sectional distribution of the selected regressors for c > 0.8 (left panel) and cross–
sectional distribution for estimated betas (right panel) from 20 December 2002 to 6 October 2017.
The colour indicates the intensity of the frequency from blue to yellow (see the colourmap).

mean median std. dev. q10% q90%

2002 18.01 17.00 8.23 12.50 21.50
2003 19.30 17.54 10.28 13.23 23.13
2004 21.51 18.82 12.35 14.57 25.79
2005 22.24 19.71 12.26 15.53 26.37
2006 21.08 19.16 10.22 15.11 24.78
2007 20.79 19.00 14.51 15.05 24.06
2008 20.20 17.96 11.00 14.02 24.03
2009 20.07 16.00 15.32 12.04 26.57
2010 21.86 17.00 17.03 12.85 32.93
2011 21.63 19.12 11.39 15.38 25.69
2012 20.50 19.21 8.40 15.32 23.96
2013 20.96 18.94 11.07 14.88 25.03
2014 21.23 18.96 12.06 14.94 25.26
2015 21.18 18.98 11.61 14.97 24.79
2016 20.60 18.47 11.11 14.64 24.02
2017 20.77 18.96 9.99 15.00 24.33

Table 1: Yearly descriptive statistics (mean, median, standard deviation and the 10th and 90th
percentile) for the cross–sectional distribution of the number of the selected regressors for each
institution.
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mean median std. dev. mean median std. dev.

2002
-0.1521 -0.1475 0.0711

2010
-0.1391 -0.1337 0.0787

0.1462 0.1400 0.0674 0.1408 0.1341 0.0762

2003
-0.1477 -0.1427 0.0727

2011
-0.1430 -0.1381 0.0717

0.1431 0.1377 0.0682 0.1492 0.1445 0.0715

2004
-0.1404 -0.1357 0.0716

2012
-0.1539 -0.1486 0.0727

0.1396 0.1347 0.0679 0.1571 0.1517 0.0718

2005
-0.1358 -0.1311 0.0693

2013
-0.1452 -0.1403 0.0726

0.1371 0.1320 0.0666 0.1431 0.1380 0.0684

2006
-0.1406 -0.1355 0.0684

2014
-0.1367 -0.1328 0.0691

0.1418 0.1365 0.0660 0.1363 0.1315 0.0657

2007
-0.1425 -0.1373 0.0679

2015
-0.1373 -0.1326 0.0692

0.1521 0.1466 0.0690 0.1405 0.1359 0.0678

2008
-0.1512 -0.1469 0.0742

2016
-0.1432 -0.1382 0.0709

0.1543 0.1497 0.0738 0.1472 0.1418 0.0710

2009
-0.1509 -0.1476 0.0808

2017
-0.1447 -0.1400 0.0709

0.1513 0.1463 0.0788 0.1488 0.1431 0.0715

Table 2: Yearly cross–sectional descriptive statistics (mean, median and standard deviation) on
the betas of the selected regressors.
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Figure 3: Cross–sectional out–degree distribution of the considered financial institutions over
time. The frequency (y–axes) indicates the number of financial firms with the correspondent
number of out–degrees (x–axes).
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The cumulative distribution function of the GPD is

Fx,ξ,β =

 1−
(

1 + ξ xβ

)−1/ξ
, if ξ 6= 0, β > 0,

1− e−x/β, if ξ = 0, β > 0.

where β is the scale parameter and ξ represents the shape parameter (tail index) which models

the weight of the tail.4

We provide in Figure 4 a simple intuition as to why the variation over time of the shape

parameter ξ can represent a meaningful signal of structural changes on the network connected-

ness. Ceteris paribus, an increase of the shaper parameter ξ at time t would result in a more

heavy–tailed degree distribution (Panel b) with respect to the baseline scenario in t− 1 (Panel

a). Such a change would indicate an increase in the number of nodes with higher out–degrees

(red bars in the figure) due to either the formation of new hubs or a strengthening of the existing

ones.

Indeed, we estimate the GPD on the out–degree distribution over time and obtain a time–

sequence of the shape parameter ξ̂t. For the sake of simplicity, we name this sequence hereafter

the Hubs Indicator (HIND) since an increase over time in the shape of the degree distribution

represents a signal of a higher number of financial hubs, that is, nodes with higher (out–going)

connections in the financial system. The HIND is included in Figure 5 and shows an interesting

dynamic with occasional level shifts in occurrence of particular financial and economic events

before and after the global financial crisis and the subsequent European debt crisis.5 Given

that the two crises are intimately associated, we identify the main jumps on the HIND and

report the correspondent episodes in red dash–dotted lines plus two more recent episodes that

influenced the global financial market listed in Table 3. It is worth noting that there is an

increase in the HIND during the first part of the sample as indicated by the solid black line

which goes from the global minimum in June 2005 to the global maximum in September 2010.

Before the timeline events of the global financial crisis there are two type of episodes that are

detected by the indicator. The first type is a dramatic weather event: the Hurricane Katrina

which occurred on 29 August 2005 (#1) and had a significant impact on the energy market,

especially on crude oil and natural gas prices (Brown and Yücel, 2008, Geman, 2009). As a

direct consequence of this, there were severe financial losses for investment funds such as energy

hedge funds (Fusaro, 2005). The second type involves monetary policy decisions by the FED

4Note that, if ξ = 0, the GPD distribution reduces to the exponential distribution with mean β. Moreover,
x ≥ 0, if ξ ≥ 0 and 0 ≤ x ≤ −β/ξ otherwise. For further details, see for example Castillo and Hadi (1997) and
Embrechts et al. (2013).

5We have checked that the condition 0 ≤ x ≤ −β/ξ is met for negative values of ξ̂t. Moreover, we test that
the dynamic of the shape indicator ξ̂t is not affected by the time–varying cross–sectional sample size reported in
Figure 1 by performing a regression on levels and differences.
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Figure 4: Example of an increase of the shape parameter ξ in t (Panel b) with respect to the
baseline scenario in t − 1 (Panel a). Such a structural change in the network connectedness
indicates an increase in the number of nodes with higher out–degrees (red bars) due to either
the formation of new hubs or a strengthening of the existing ones.

# Date Event Description

1 Aug 2005 Hurricane Katrina Impact on the commodities market.

2 May 2006 FED 16th consecutive raise of interest rates
Inflation pressure with concerns for the global economic growth.

3 Jun 2006 FED 17th consecutive raise of interest rates

4 Feb 2007 HSBC announces losses due to the US subprime mortgage market
Signal of vulnerability on the subprime mortgage market.

5 July 2007 Bear Stearns’ two subprime Hedge Funds lost almost all the cap.

6 Sep 2008 Bankruptcy of Lehman Brothers Subprime financial crisis.

7 Jul 2011 Greece second bailout European Sovereign debt crisis.

8 Jul 2013 30-Year US Treasury Swaps Spread returns positive Measure of the cost of funding. Signal of a market normalization.

9 Dec 2015 Crude oil prices fall WTI futures fell at $36.66 per barrel.

10 Jul 2017 Global growth Signals of continued and synchronized global growth.

Table 3: Dating of significant financial and economic events before and after the Global Financial
crisis and the European Sovereign debt crisis plus two more recent episodes that influenced the
global financial market. The episodes are reported in Figure 5 (dash-dot red lines).
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Figure 5: The Hubs Indicator (HIND) over time including the confidence interval at 95% (grey
area). Red dash–dotted lines indicate financial and economic events as reported in Table 3.

with the 16th (#2) and 17th (#3) consecutive raise of interest rates in May and June 2006,

respectively. Such decisions have been made to contrast inflation pressure and to cool housing

market prices6 which in turn provoked concerns for global economic growth and generated a

sell-off in particular on the emerging markets.7

With the beginning of 2007, the HIND shows a jump in correspondence with HSBC’s an-

nouncement about financial losses on the subprime mortgage market (#4). At that time, HSBC

was the third-largest bank in the world8 and one of the main players in the US subprime mort-

gage market. Then, the indicator continues to growth upwards with a second jump on the

collapse of the two Bear Stearns’ subprime hedge funds (#5). Both of these episodes repre-

sented a strong signal of the increasing vulnerability of the subprime mortgage market. The

highest upward shift of the HIND indicator is on the Lehman bankruptcy (#6) in mid September

2008 (+128%), the tipping point for the global financial market crash which in turn provoked

6Statements by the Federal Open Market Committee (FOMC) on the 16th and 17th raise of inter-
est rates are available at https://www.federalreserve.gov/newsevents/pressreleases/monetary20060510a.htm and
https://www.federalreserve.gov/newsevents/pressreleases/monetary20060629a.htm.

7See for example the IMF release about the financial market situation available at
https://www.imf.org/External/Pubs/FT/fmu/eng/2006/0606.pdf.

8At the time of writing, HSBC is the seventh world largest bank in terms of market capitalisation (Source:
S&P Global Market Intelligence).
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a generalised panic and global sell-off escalating into a liquidity crisis. The indicator becomes

stable during the second part of 2009 and then starts to decrease to the pre–Lehman level at

the end of May 2011. After that, it is clearly observable that there is a new upward shift in the

indicator during the worsening of the European sovereign debt crisis with the second bailout

of Greece (#7) in July 2011. The HIND peaks again on December 2011 corresponding to the

most acute phase of the sovereign debt crisis of Italy and Spain, and then begins to decay until

it stabilises during the second part of 2012. At the beginning of the second half of 2013, the

indicator decreases given the signals of market normalization (#8) and reaches the pre–Lehman

level at the beginning of 2014. Finally, the last upward shift of the HIND is in December 2015

during the fall of the crude oil prices (#9) which is also related to the slowdown of the Chinese

economy. The indicator begins to decrease in 2017 with a downward shift in July when all the

major financial markets had a strong positive performance due to the signals of synchronised

global growth (MSCI World Index, +3.92%).

Interestingly, the dynamic of the HIND indicator is consistent with the cyclical variation

of the system–wide connectedness presented in Demirer et al. (2017) which detected significant

events during the Global financial crisis and the European sovereign debt crisis. In their analysis,

the authors cover a period from 2004 to 2013 and found that the trend on the system–wide

connectedness reaches its peak and starts to decline after the default of Lehman. Even if, in

our considered case, the largest single upward shift occurs after the Lehman failure, the HIND

reaches is peak on September 2010 and decreases immediately after the FED’s announcement

of a new round of quantitative easing (QE2) in November 2010. Both the indicators show

an increase of interconnectedness and a peak during the worsening of the European sovereign

debt crisis in mid 2011 with a decay immediately after. The HIND indicator also shows a

new bump by mid-2015 which clearly cannot be compared with the system–wide connectedness

of Demirer et al. (2017) for the sample length limitation in their analysis. However, this is

visible on the total-connectedness index in Korobilis and Yilmaz (2018) obtained using the same

variance decomposition approach through a time-varying parameter Bayesian VAR for 35 US

and European financial institutions from January 2004 to July 2016.

Similarly with the financial stress indicators such as the St. Louis Fed Financial Stress

Index (STLFSI, Kliesen et al., 2010) and the Composite Indicator of Systemic Stress (CISS,

Hollo et al., 2012), the HIND proves to be very reactive to stress events. It is worth noting that,

unlike those stress indices, measures such as the HIND, the spillover index and other network

measures exploit the dependence structure among financial firms and are not obtained through

the aggregation of different market sources (i.e., equity, bond, derivatives and forex markets).

As a further analysis, we test if the time variation of the HIND can represent a meaningful

market predictor. We select as the proxy for the considered global market the MSCI World
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Financials Index which captures large and mid cap representation across 23 developed countries

and therefore, is fully consistent with the considered dataset.9 We model the market returns as

a function of the usual market drivers (i.e., volatility and risk premia) including changes on the

HIND (∆HIND). Hence, we consider the Exponential–GARCH in mean model (EGARCH–m)

which takes into account time varying risk premia in the mean equation and the asymmetry in

the volatility equation:

rt = c+
L∑
l=1

φlrt−l +
M∑
m=0

δmh
1/2
t−m +

K∑
k=0

βk∆HINDt−k + h
1/2
t zt,

log(ht) = ω +

q∑
i=1

g(zt−i) +

p∑
j=1

φj log(ht−i),

where rt denotes the MSCI index log–return at time t and g(zt) = αzt + κ [|zt| − E|zt|] and

∆HINDt−k represents the changes in the indicator included in the mean equation at lag k. As

usually considered in the literature, we limit the model orders to one, AR(1)–EGARCH–m(1,1),

and include HINDt−k up to the sixth lag (k = 6) to check its effect on market returns. The

estimates for the mean and volatility equations are reported in Table 4. At a 5% confidence

level, the autoregressive term rt−1 and the lagged (log) volatility log(ht−i) in the mean equation

do not have any impact on the dynamic of the market returns while, as expected, all the terms

in the volatility equation are significant. The HIND shows an impact on the weekly market

returns at the first and the fourth lag which can be interpreted as a weekly (one week) and

monthly effect (four week). In particular, the coefficient of ∆HINDt−1 (−0.1475) indicates that

an increase of the shape indicator has a negative impact on the market returns at the first

lag, while at the fourth lag, HINDt−4, it has a positive impact (0.1115). We believe that this

weekly and monthly effect are a reflection of heterogeneous market participants which differently

affect the short and longer time horizons as described in Müller et al. (1997) and Corsi (2009)

on the asymmetric propagation of volatility. In this respect, the negative sign for HINDt−4

may reflect the asymmetric impact of the monthly participant component over the weekly one

resulting in a mean reverting effect on the market returns. As a robustness check, we assess if

the HIND maintains its explanatory power on the market returns at the first and fourth lag after

including another set of predictors: i) changes in volatility indices for four macro-areas which

are representative of the global market index; ii) changes in financial stress indicators such as

9The MSCI World Financial index contains 23 developed countries for three main areas: i) Americas: Canada,
United States; ii) Europe&Middle East: Austria, Belgium, Denmark, Finland, Germany, Ireland, Israel, Italy,
Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom; iii) Pacific: Australia, Hong
Kong, Japan, New Zealand and Singapore. These countries represent more than the 62% of our dataset.
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estimate std. err. t–stat p–value

mean equation

(constant) 0.0010 0.0010 1.0000 0.3170
rt−1 -0.0352 0.0402 -0.8800 0.3810
log(ht−1) 0.3697 1.5314 0.2400 0.8090

∆HINDt−1 -0.1475 0.0333 -4.4300 0.0000

∆HINDt−2 -0.0948 0.0505 -1.8800 0.0600
∆HINDt−3 -0.0282 0.0446 -0.6300 0.5270

∆HINDt−4 0.1115 0.0466 2.3900 0.0170

∆HINDt−5 0.0326 0.0445 0.7300 0.4630
∆HINDt−6 -0.0045 0.0430 -0.1000 0.9170

volatility equation

(constant) -0.1540 0.0482 -3.2000 0.0010
zt−1 -0.1363 0.0138 -9.8700 0.0000
|zt−1| − E|zt−1| 0.0667 0.0228 2.9300 0.0030
log(ht−1) 0.9798 0.0064 152.0000 0.0000

obs 765 Wald χ2(5) 29.25
Log-likelihood 1779.78 Prob > χ2 0.0003

Table 4: Estimates for the AR(1)–EGARCH–m(1,1) model by including the (lagged) changes in
the Hubs Indicator ∆HINDt in the mean equation. The considered period is from 20 December
2002 to 6 October 2017.
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the CISS and the STLFSI and iii) the Fama and French 5 factors (Fama and French, 2015).10

The results are included Appendix C and confirm the previous findings for the HIND indicator

in all the considered regressions.

5 Conclusion

Estimation of high–dimensional dynamic models is a relevant statistical issue that finds large

application in econometric and finance in several contexts. Among those, systemic risk assess-

ment plays a major role and strongly benefits from the availability of models that account for the

evolution over time of the contagion mechanism within a network where vertexes represent fi-

nancial firms. However, the curse of dimensionality problem that affects dynamic models, is that

it limits their applicability to small–to–medium contexts even in their simpler linear autoregres-

sive form. In this paper we deal with the problem of estimating high–dimensional VAR models

by following a more realistic equation–by–equation estimation approach that effectively reduces

the number of parameters to be estimated for each cross–sectional dimension. Moreover, since

the main focus is to provide risk assessment based on networks, we cast the problem within the

Bayesian framework that displays its power by allowing joint parameters estimated and model

inference. Indeed, the model selection issues are related to the inclusion of covariates that can

be interpreted as connections among vertexes. More specifically, we propose a shrinkage and

selection methodology designed for network inference in high–dimensional data and present a

regularised linear model with Spike–and–Slab prior on the regression coefficients (e.g., Mitchell

and Beauchamp, 1988, George and McCulloch, 1993, 1997) where the marginal inclusion prob-

ability of each regressor can be obtained as a byproduct of the estimation procedure. To avoid

the computational burden of MCMC methods, we follow the idea of Roǒková and George (2014)

and developed a fast and efficient Expectation–Maximisation (EM) algorithm (Dempster et al.,

1977). In particular, we extend the SVSS–EM approach to the case where the error terms of

the Gaussian linear regression model are heteroscedastic by adding an ARCH–type equation to

model the dynamic evolution of the variance through an approximate–EM algorithm.

The proposed model can be interpreted as a VAR model with a diagonal variance–covariance

matrix where shocks are instantaneously uncorrelated and the number of covariates is strictly

larger than the number of observations. More interestingly, to account for cross–sectional de-

pendence, we include in the regression additional observed factors that cannot be excluded from

the regression. Therefore, the model accounts for two sets of covariates: the first set contains

the predetermined variables which cannot be penalised (that is, the set of common factors and

10Data source in parenthesis: CISS(ECB–sdw), STLFSI (FRED–St.Louis Fed), Volatility indices (Bloomberg)
and Fama and French 5 factors (French’s website).
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the autoregressive component of the given financial institution) while the second set contains

all the considered financial firms. For a given institution, the financial linkages are obtained by

the posterior inclusion probability which consequently return a weighted directed network.

In the empirical application, we consider the weekly closing price series of 1248 world finan-

cial firms active and dead from 29 December 2000 to 6 October 2017. We estimate dynamic

networks using a rolling window approach and show that the shape of the out–degree distribu-

tion over time, namely the hubs indicator (HIND), exhibits the typical behaviour of financial

stress indicators showing occasional level–shift during particular economic and financial events.

Moreover, the HIND proved to be a significant predictor of global market returns at the first

lag (one week) and the fourth lag (one month).

We believe that these results highlight the value of our proposed methodology in the infer-

ence of high–dimensional networks and can represent a useful tool among the ones presented in

the literature. As wisely stated in Diebold and Yılmaz (2014), all these proposed methodologies

“have much to learn from each other” and each can contribute to successfully measuring finan-

cial risks. Our approach is similar to Billio et al. (2012) for the interpretation of causal linkages

but the connections are originated through the inclusion probabilities which provide a weighted

financial network that is not based on variance decompositions and does not need any identifying

assumption, unlike Diebold and Yılmaz (2014). Several other types of network analyses can be

carried out with the presented model, such as community detection and clustering and by also

considering other markets (corporate bonds). We leave this aspect for further research.
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A The SVSS–EM algorithm

We provide here a detailed proof of the updating equations of parameters (µ,βᵀ,ϕᵀ,νᵀ1)
ᵀ

for the

Heteroscedastic SSVS–EM algorithm introduced in Section 3. The E–step of the EM algorithm

requires the evaluation of the conditional expectation of the complete–data log–likelihood in

equation (19) of Section 3.2, leading to the EM objective function that is subsequently maximised

to get parameters updates. Ignoring constant terms, the objective function of the EM algorithm

becomes

Q
(
ϑ | ϑ̂

(m)
)

= −T
2

log (2π)− 1

2

T∑
t=1

log (ht)−
1

2

T∑
t=1

‖yt − µ− xᵀ
tβ − zᵀtϕ‖22
ht

− p

2
log (2π)− 1

2

p∑
j=1

Eγ (log (bj))−
1

2

p∑
j=1

β2jEγ

(
1

bj

)

+

p∑
j=1

Eγ (γj) log

(
ω

1− ω

)
+ (p+ b− 1) log (1− ω) + (a− 1) log (ω)

− (a+ b+ 2)

p∑
j=1

log (1 + ν1,j) + b

p∑
j=1

log (ν1,j)−
p∑
j=1

log (Be (a+ 1, b+ 1))

− log (Be (a, b))− 1

2
log (2π)− 1

2
log
(
σ2γ
)
− 1

2

(γh − µγ)2

σ2γ

− 1

2
log (2π)− 1

2
log
(
σ2α
)
− 1

2

(αh − µα)2

σ2α

− 1

2
log (2π)− 1

2
log
(
σ2β
)
− 1

2

(βh − µβ)2

σ2β

− 1

2

(
ϕ− µϕ

)ᵀ
Σ−1ϕ

(
ϕ− µϕ

)
= C +Q1,c (µ,β,ϕ, ν1) +Q2,c (ν1) +Q3,c (ω) +Q4,c (ψ) + logQ5,c (ϕ) ,
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where

C = −T + p+ q + 3

2
log (2π)− log (Be (a+ 1, b+ 1))

−
p∑
j=1

log (Be (a, b))− 1

2
log |Σϕ|

Q1,c (µ,β,ϕ,ν1) = −1

2

T∑
t=1

log (ht)−
1

2

T∑
t=1

‖yt − µ− xᵀ
tβ − zᵀtϕ‖22
ht

− 1

2

p∑
j=1

β2j b̂
−1
j

(m)

Q2,c (ν1) = −1

2

p∑
j=1

̂log (bj)
(m)
− (a+ b+ 2)

p∑
j=1

log (1 + ν1,j) + b

p∑
j=1

log (ν1,j)

Q3,c (ω) =

p∑
j=1

γ̂
(m)
j log

(
ω

1− ω

)
+ (p+ b− 1) log (1− ω) + (a− 1) log (ω)

Q4,c (ψ) = −1

2

(γh − µγ)2

σ2γ
− 1

2

(αh − µα)2

σ2α
− 1

2

(βh − µβ)2

σ2β

Q5,c (ϕ) = −1

2

(
ϕ− µϕ

)ᵀ
Σ−1ϕ

(
ϕ− µϕ

)
,

and

γ̂
(m)
j = Eγ

(
γj | y,X,Z, ϑ̂

(m)
)

=
1

1 + d̂
(m)
j

(21)

b̂−1j
(m)

= Eγ

(
1

bj
| y,X,Z, ϑ̂

(m)
)

=
1

ν1,j
γ̂
(m)
j +

1

ν0

(
1− γ̂(m)

j

)
(22)

̂log (bj)
(m)

= Eγ
(

log (bj) | y,X,Z, ϑ̂
(m)
)

= log (ν1,j) γ̂
(m)
j + log (ν0)

(
1− γ̂(m)

j

)
, (23)

for j = 1, 2, . . . , p, where d̂
(m)
j =

√
ν̂
(m)
1,j

ν0
exp

{
(β̂mj )

2

2

(
1

ν̂
(m)
i,j

− 1
ν0

)}
1−ω̂(m)

ω̂(m) .

One nice feature of the EM algorithms would be the analytical solution of the M–step for

all the parameters. Unfortunately, for the Gaussian regression model with Spike–and–Slab

prior here considered, a closed form update does not exist for all the parameters. Therefore,

we resort to a Conditional Expectation Maximisation (CEM) approach (see McLachlan and

Krishnan, 2007). Under the Spike–and–Slab prior in equations (10)–(18), an iteration of the
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CEM algorithm cycles through the set of all the model parameters. Specifically, we get

ϑ̂
(m+1)

? = µϑ? + K̂
(m)
?

(
y −X?µϑ?

)
(24)

K̂
(m)
? = Σ̂

(m)
ϑ?

Xᵀ
? F̂(m)−1 (25)

F̂(m) = Ĥ(m)−1 + X?Σ̂
(m)
ϑ?

Xᵀ
? (26)

ω̂(m+1) =
1

p+ b+ a− 2

 p∑
j=1

γ̂
(m)
j + a− 1

 (27)

ν̂
(m+1)
1 = −

(
Â(m) + B̂(m) + b

)
+ ∆̂(m)

2
(
B̂(m) − a− 2

) (28)

∆̂(m) =

√(
Â(m) + B̂(m) + b

)2
− 4

(
B̂(m) − a− 2

)
Â(m) (29)

B̂(m) = − γ̂
(m)

2
(30)

Â(m) =
1

2
β̂
(m) 2

� γ̂(m), (31)

where ϑ? = (µ,βᵀ,ϕᵀ)ᵀ, y = (y1, y2, . . . , yT )ᵀ, X? =
(
ιT X Z

)
, ιT is a column vector

of dimension (T × 1) of unit elements, X = (x1,x2, . . . ,xT )ᵀ and Z = (z1, z2, . . . , zT )ᵀ, µϑ? =

(µµ,0
ᵀ,µᵀ

ϕ)
ᵀ
, Σ̂

(m)
ϑ?

= diag
(
σ2µ, D̂

(m),Σϕ

)
, � denotes the Hadamart componentwise vector mul-

tiplication, D̂(m) = diag

{
b̂−11

(m)

, b̂−12

(m)

, . . . , b̂−1p
(m)
}

and Ĥ(m) = diag
{
ĥ
(m)
1 , ĥ

(m)
2 , . . . , ĥ

(m)
T

}
.

A detailed proof of the updating equations (24)–(26) is provided in Appendix A.1, while a

detailed proof of the updating equations (28)–(31) is provided in Appendix A.2. Moreover,

the updating equation (26) depends on the update of the matrix Ĥ(m) of variance terms. The

update of the GARCH parameters is described in Appendix A.3.
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A.1 Update of ϑ?

Let Qϑ?,c (µ,β,ϕ) = Q6,c (µ,β,ϕ) +Q7,c (ϕ) +Q8,c (µ) be the objective function with respect

to the parameters ϑ? = (µ,βᵀ,ϕᵀ)ᵀ, where

Q6,c (µ,β,ϕ) = −1

2

T∑
t=1

‖yt − µ− xᵀ
tβ − zᵀtϕ‖22
ht

− 1

2

p∑
j=1

β2j b̂
−1
j

(m)

Q7,c (ϕ) = −1

2

(
ϕ− µϕ

)ᵀ
Σ−1ϕ

(
ϕ− µϕ

)
Q8,c (µ) = −1

2

(µ− µµ)2

σ2µ
.

Upon defining the quantities y = (y1, y2, . . . , yT )ᵀ, X? =
(
ιT X Z

)
, where ιT is a column vec-

tor of dimension (T × 1), X = (x1,x2, . . . ,xT )ᵀ and Z = (z1, z2, . . . , zT )ᵀ, µϑ? = (µµ,0
ᵀ,µᵀ

ϕ)
ᵀ
,

Σϑ? = diag
(
σ2µ,Σβ,Σϕ

)
the objective function Qϑ?,c (µ,β,ϕ) can be rewritten as

Qϑ?,c (µ,β,ϕ) = −1

2
(y −X?ϑ?)

ᵀ H(m)−1 (y −X?ϑ?)

− 1

2

(
ϑ? − µϑ?

)ᵀ
Σ−1ϑ?

(
ϑ? − µϑ?

)
, (32)

thereby leading to the following first order condition with respect to the vector of unknown

parameters ϑ?

∂Qϑ?,c (µ,β,ϕ)

∂ϑ?
= −Xᵀ

?H
(m)−1X?ϑ? + Xᵀ

?H
(m)−1y −Σ−1ϑ? ϑ? + Σ−1ϑ? µϑ? = 0, (33)

and to the parameter update ϑ̂
(m+1)

? =
(
Xᵀ
?H

(m)−1X? + Σ−1ϑ?

)−1 (
Xᵀ
?H

(m)−1y + Σ−1ϑ? µϑ?

)
. Af-

ter some manipulations, we get(
Xᵀ
?H

(m)−1X? + Σ−1ϑ?

)−1
= Σϑ? −Σϑ?X

ᵀ
?F
−1X?Σϑ?

= Σϑ? −K?X?Σϑ?

= (I−K?X?) Σϑ?

K? = Σϑ?X
ᵀ
?F
−1

F = H(m)−1 + X?Σϑ?X
ᵀ
?, (34)
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and the parameters update ϑ̂
(m+1)

? becomes

ϑ̂
(m+1)

? = µϑ? −Σϑ?X
ᵀ
?F
−1X?µϑ? + Σϑ?X

ᵀ
?H

(m)−1y −Σϑ?X
ᵀ
?F
−1X?Σϑ?X

ᵀ
?H

(m)−1y

= µϑ? −K?X?µϑ? + Σϑ?X
ᵀ
?H

(m)−1y −K?X?Σϑ?X
ᵀ
?H

(m)−1y (35)

= µϑ? + K?

(
y −X?µϑ?

)
, (36)

where the last result follows immediately by observing that, from the definition of the Kalman

gain K?

(
H(m)−1 + X?Σϑ?X

ᵀ
?

)
= Σϑ?X

ᵀ
?, and

Σϑ?X
ᵀ
?H

(m)−1y = K?H
(m)H(m)−1y + K?X?Σϑ?X

ᵀ
?H

(m)−1y, (37)

which is then substituted into equation (35), yields equation (36).

A.2 Update of ν1

Concerning the solution for ν1 observe that the update is the solution of the following equation

with respect to ν1:

ν̂
(m+1)
1 = arg max

ν1∈R+
Qν1 , (38)

where Qν1 = Qν1,1 +Qν1,2 +Qν1,3

Qν1,j ,1 = −1

2
̂log (bj)

(m+1)
(39)

Qν1,j ,2 = −1

2
β̂j

(m+1) 2

b̂−1j
(m+1)

(40)

Qν1,j ,3 = − (a+ b+ 2) log (1 + ν1,j) + b log (ν1,j) . (41)

Now, substituting for the expressions of ̂log (bj)
(m+1)

and b̂−1j
(m+1)

into previous equations and

differentiating with respect to ν1, the FOC of the optimisation problem becomes
Qν1
∂ν1

= 0, where

Qν1,j ,1
∂ν1,j

= −
γ̂
(m+1)
j

2ν1,j
= 0 (42)

Qν1,j ,2
∂ν1,j

=
β̂j

(m+1) 2

γ̂j
(m+1)

2ν21,j
= 0 (43)

Qν1,j ,3
∂ν1,j

= −a+ b+ 2

1 + ν1,j
+

b

ν1,j
= 0, (44)
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for j = 1, 2, . . . , p, leading to the following set of equations

Aj
ν21,j
− a+ b+ 2

1 + ν1,j
+
Bj + b

ν1,j
= 0 (45)

− (a+ b+ 2) ν21,j + (Bj + b) ν1,j (1 + ν1,j) +Aj (1 + ν1,j) = 0 (46)

(Bj − a− 2) ν21,j + (Aj +Bj + b) ν1,j +Aj = 0. (47)

Therefore we have that

ν̂
(m+1)
1,j =

− (Aj +Bj + b)−∆j

2 (Bj − a− 2)
(48)

∆j =

√
(Aj +Bj + b)2 − 4 (Bj − a− 2)Aj (49)

where Bj = − γ̂
(m)
j

2 < 0 and Aj = 1
2 β̂

(m+1)
j

2
γ̂
(m)
j > 0 for j = 1, 2, . . . , p and ν̂

(m+1)
1 =(

ν̂
(m+1)
1,1 , ν̂

(m+1)
1,2 , . . . , ν̂

(m+1)
1,p

)ᵀ
, B = (B1, B2, . . . , Bp)

ᵀ and A = (A1, A2, . . . , Ap)
ᵀ, defined in

Equations (30)–(31).

A.3 Updates of the GARCH parameters

The GARCH parameters ψ = (γh, αh, βh) do not admit a known closed form expression for

the maximum of the log–likelihood because of the recursive nature of the variance equation

in model (7). Therefore, we propose an approximate EM algorithm where the full condition-

als of (γh, αh, βh) are approximated by a simpler model as in Ardia (2008) and Nakatsuma

(1998, 2000) that introduced a similar approach in order to tailor the Metropolis–Hastings

(MH) proposal to the target.11 The approximating densities for the GARCH parameters

are obtained by exploiting the well known ARMA representation of GARCH processes for

ε2t = yt−µ−xᵀ
tβ−zᵀtϕ, for t = 1, 2, . . . , T . Indeed, by defining the martingale difference process

vt = ε2t − Et−1
(
ε2t
)

=
(
ε2t
ht
− 1
)
ht ∼

(
χ2
1 − 1

)
ht with E (vt | ht) = 0 and E

(
v2t | ht

)
= 2h2t , we

get the following stationary ARMA representation for the squared innovations ε2t

ε2t = γh + (αh + βh) ε2t−1 − βhvt−1 + vt, (50)

11As a further reference for an approximate EM within the context of multivariate GARCH models, see Demos
and Sentana (1998).
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for t = 1, 2, . . . , T , with ε20 = 0 and v0 = 0. Following Ardia (2008), expression (50) can be

written as vt = ε2t − `∗t ᵀψ̃h where `∗t = (l∗t , v
∗
t )

ᵀ and ψ̃h = (γh, αh)ᵀ, with

l∗t = 1 + βhl
∗
t (51)

v∗t = vt−1 + βhv
∗
t−1, (52)

where the recursion is initialised at l∗0 = v∗0 = v0 = 0. The function vt in equation (50) can

therefore be expressed as a linear function of the vector of transformed parameters ψ̃h. The

procedure then approximates the innovation term vt in equation (50) by a Gaussian distribution

zt ∼ N
(
0, 2h2t

)
leading to the following auxiliary model

zt (ψ) = ε2t − γh − (αh + βh) ε2t−1 + βhzt−1 (ψ) , (53)

where zt (ψ) = ε2t − `∗t
ᵀψ̃h, z = ε2 − Lψ̃h, L =

(
`ᵀ1, `

ᵀ
2, . . . , `

ᵀ
T

)ᵀ
and ε2 =

(
ε21, ε

2
2, . . . , ε

2
T

)ᵀ
.

Therefore, we can approximate the full conditional distribution of the GARCH parameters ψ̃h

using the following the auxiliary model

L∗ (γh, αh | y,X,Z) ∝ |Λ|−
1
2 exp

{
−1

2
zᵀΛ−1z

}
1S

(
ψ̃h

)
, (54)

where Λ = Λ (ψ) = diag
({

2h2t (ψ)
}T
t=1

)
and S denotes the convex region such that γh ≥ 0,

αh > 0. The approximating density for γh, αh is obtained by combining the approximated

likelihood function defined in equation (54) and the prior density defined in equations (17)–(18),

by the usual Bayesian updating

π
(
ψ̃h | βh,y,X,Z

)
∝ φ

(
ψ̃h | µ̂ψ̃h , Σ̂ψ̃h

)
1(S)

(
ψ̃h

)
, (55)

where

Σ̂
ψ̃h

=
(
LᵀΛ−1L + Σ−1

ψ̃h

)−1
(56)

µ̂
ψ̃h

= Σ̂
ψ̃h

(
LᵀΛ−1ε+ Σ−1

ψ̃h
µ
ψ̃h

)
, (57)

and µ
ψ̃h

= (µγ , µα)ᵀ and Σ
ψ̃h

=

(
σ2α 0

0 σ2β

)
are the prior parameters defined in equations (17)–

(18).

Concerning the remaining GARCH parameter βh, the way it enters the function zt (ψ) in

equation (53) prevents that zt (ψ) could be expressed as a linear function of βh in a similar way

as for ψ̃h. To overcome this problem, we linearise zt (ψ) with respect to βh by a first order Taylor
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expansion at point β̂
(m)
h

zt (β) ≈ zt
(
β̂(m)

)
−∇β̂

(m)
h
t

(
β − β̃(m)

h

)
, (58)

where ∇β̂
(m)
h
t = −∂zt(β)

∂β

∣∣∣
β=β̂

(m)
h

where β̂
(m)
h is the value of the parameter βh in the previous

iteration of the EM algorithm and the term ∇β̂
(m)
h
t can be calculated by the following recursion

∇β̂
(m)
h
t = ε2t−1 − zt−1

(
β̂
(m)
h

)
+ β̂

(m)
h ∇β̂

(m)
h
t−1 , (59)

with∇β̂
(m)
h

0 = 0. Furthermore, let rt

(
β̂
(m)
h

)
= zt

(
β̂
(m)
h

)
+β̂

(m)
h ∇β̂

(m)
h
t and zt

(
β̂
(m)
h

)
= rt

(
β̂
(m)
h

)
−

β̂
(m)
h ∇β̂

(m)
h
t , then the main term in the quadratic form in equation (54) can be expressed as z = r−

βh∇β, where ∇β =

(
∇β̂

(m)
h

1 ,∇β̂
(m)
h

2 , . . . ,∇β̂
(m)
h
T

)ᵀ

and r =
(
r1

(
β̂
(m)
h

)
, r2

(
β̂
(m)
h

)
, . . . , rT

(
β̂
(m)
h

))ᵀ
yielding the following approximation for the likelihood function of βh

L∗ (βh | Y,X,Z, γh, αh) ∝ |Λ|−
1
2 exp

{
−1

2
(r− β∇β)ᵀ Λ−1 (r− β∇β)

}
1(0,1−αh) (βh) . (60)

The approximated full conditional distribution of the parameter βh is obtained by combining

the approximated likelihood function defined in equation (60) and the prior density defined in

equations (17)–(18), by the usual Bayesian updating

π
(
βh | ωh, αh, β̂

(m)
h ,Y,X,Z

)
∝ φ

(
βh | µ̂β, σ̂2β

)
1(0,1−αh) (βh) , (61)

where

σ̂2β =

(
∇ᵀ
βΛ
−1∇β +

1

σ2βh

)−1
(62)

µ̂β = σ̂2β

(
∇ᵀ
βΛ
−1r +

µβh
σ2βh

)
. (63)

Summarising, the updated values of the GARCH parameters at iteration m+ 1 are

̂̃
ψ

(m+1)

h =
(
LᵀΛ−1L + Σ−1

ψ̃h

)−1 (
LᵀΛ−1ε+ Σ−1

ψ̃h
µ
ψ̃h

)
(64)

β̂
(m+1)
h =

(
∇ᵀ
βΛ
−1∇β +

1

σ2βh

)−1(
∇ᵀ
βΛ
−1r +

µβh
σ2βh

)
, (65)
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where
̂̃
ψ

(m+1)

h =
(
γ̂
(m+1)
h , α̂

(m+1)
h

)ᵀ
and

L =
(
`ᵀ1, `

ᵀ
2, . . . , `

ᵀ
T

)ᵀ
(66)

Λ = Λ (ψ) = diag

({
2h2t

(
ψ̂(m)

)}T
t=1

)
(67)

r =
(
r1

(
β̂
(m)
h

)
, r2

(
β̂
(m)
h

)
, . . . , rT

(
β̂
(m)
h

))ᵀ
(68)

∇β =

(
∇β̂

(m)
h

1 ,∇β̂
(m)
h

2 , . . . ,∇β̂
(m)
h
T

)ᵀ

, (69)

with `∗t = (l∗t , v
∗
t ) defined in equations (51)–(52).
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B Number of financial firms by country

The following Table provides the list of the 1248 financial firms considered in the empirical

application discussed in Section 4.

Country BAN BRO INS OTH Total Country BAN BRO INS OTH Total

ARGENTINA 6 0 0 3 9 LIECHT. 1 0 0 0 1
AUSTRALIA 4 6 6 15 31 LITHUANIA 1 0 0 1 2
AUSTRIA 4 1 2 2 9 LUXEMBOURG 1 1 0 7 9
BAHRAIN 6 2 1 3 12 MALAYSIA 7 0 2 9 18
BELGIUM 2 1 2 17 22 MALTA 2 0 1 3 6
BERMUDA 0 2 7 1 10 MEXICO 4 4 0 7 15
BRAZIL 4 2 2 5 13 MONACO 1 0 0 1 2
BULGARIA 5 0 0 8 13 MOROCCO 7 0 4 4 15
CANADA 8 2 7 17 34 NETHERLANDS 2 5 3 8 18
CHILE 6 2 2 4 14 NEW ZEALAND 1 0 0 7 8
CHINA 2 6 3 3 14 NIGERIA 11 0 1 2 14
COLOMBIA 7 3 0 1 11 NORWAY 4 1 3 1 9
CROATIA 3 0 2 1 6 OMAN 6 0 1 1 8
CYPRUS 2 2 0 9 13 PAKISTAN 4 0 1 0 5
CZECH R. 1 1 0 1 3 PERU 5 1 3 2 11
DENMARK 3 0 3 2 8 PHILIPPINES 7 0 0 6 13
EGYPT 7 2 0 4 13 POLAND 9 0 1 2 12
ESTONIA 0 0 0 3 3 PORTUGAL 2 0 0 2 4
FINLAND 2 0 1 3 6 QATAR 5 1 3 5 14
FRANCE 2 5 5 17 29 ROMANIA 1 1 0 4 6
GERMANY 6 1 3 18 28 RUSSIA 3 1 1 1 6
GREECE 3 1 2 4 10 SINGAPORE 1 2 1 23 27
GUERNSEY 0 0 0 9 9 SLOVAKIA 2 1 0 1 4
HONG KONG 3 3 2 22 30 SLOVENIA 0 1 3 3 7
HUNGARY 1 3 1 3 8 SOUTH AFRICA 5 1 5 5 16
INDIA 18 1 1 3 23 SPAIN 5 3 2 12 22
INDONESIA 6 0 1 4 11 SRI LANKA 7 0 0 2 9
IRELAND 1 1 1 2 5 SWEDEN 2 2 0 9 13
ISLE OF MAN 0 0 0 1 1 SWITZERLAND 10 6 7 12 35
ISRAEL 5 0 3 8 16 TAIWAN 5 2 3 1 11
ITALY 16 2 4 6 28 THAILAND 6 0 0 3 9
JAPAN 56 11 6 50 123 TURKEY 5 1 0 1 7
JERSEY 0 1 0 1 2 U.A.E 15 1 0 6 22
JORDAN 7 0 0 4 11 U.K. 10 13 11 90 124
KOREA S. 4 3 2 0 9 U.S. 32 18 29 63 142
KUWAIT 2 1 0 4 7 VENEZUELA 5 1 0 4 10

Table 5: List of the considered 1248 financial firms according to their sector type: banks “BAN”,
brokers “BRO”, insurers “INS”and others “OTH”. The period is from 29 December 2000 to 6
October 2017 at a weekly frequency. The complete list of the firms is available upon request.
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C Analysis on market returns with an additional set of variables

We provide an additional analysis to check if the Hubs indicator (HIND) maintains its explana-

tory power on the market returns where we perform a further regression by including three other

sets of predictors lagged at one and four periods:

- Changes in volatility indices: VIX (U.S.), VSTOXX (EURO STOXX 50), VHSI (Hong

Kong) and VNKY (Nikkey). Results are included in Table 6;

- Changes in financial stress indicators such as the CISS and the STLFSI (Table 7);

- The Fama and French five global factors (Fama and French, 2015): i) Mkt–Rf (the market’s

excess return); ii) SMB (Small Minus Big); iii) HML (High Minus Low); iv) RMW (Robust

Minus Weak) and v) CMA (Conservative Minus Aggressive)12. Results are reported in

Table 8.

12The Fama and French five factors makes use of six value–weight portfolios formed on size
and book–to–market, the six value–weight portfolios formed on size and operating profitability, and
the six value–weight portfolios formed on size and investment. For further information, see
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f 5 factors 2x3.html.
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estimate std. err. t–stat p-value

mean equation

(constant) 0.0008 0.0011 0.7200 0.4700
rt−1 0.0282 0.0537 0.5300 0.5990
log(ht−1) 0.5459 1.6743 0.3300 0.7440

∆HINDt−1 -0.1277 0.0346 -3.6900 0.0000
∆HINDt−4 0.1042 0.0489 2.1300 0.0330

∆VIXt−1 -0.0006 0.0006 -1.0000 0.3150
∆VIXt−4 -0.0011 0.0005 -2.0500 0.0400
∆VSTOXXt−1 0.0009 0.0005 1.8100 0.0710
∆VSTOXXt−4 0.0003 0.0005 0.6400 0.5210
∆VHSIt−1 0.0005 0.0004 1.0800 0.2800
∆VHSIt−4 -0.0001 0.0005 -0.2200 0.8290
∆VNKYt−1 0.0000 0.0004 0.1000 0.9170
∆VNKYt−4 0.0003 0.0003 1.0100 0.3120

volatility equation

(constant) -0.1645 0.0510 -3.2200 0.0010
zt−1 -0.1418 0.0141 -10.0500 0.0000
|zt−1| − E|zt−1 0.0622 0.0236 2.6300 0.0080
log(ht−1) 0.9784 0.0068 143.5200 0.0000

obs 767 Wald χ2(12) 31.33
Log–likelihood 1786.77 Prob> χ2 0.0018

Table 6: Estimates for the AR(1)–EGARCH–m(1,1) model by including the (lagged) changes
in the HUBS indicator ∆HINDt and the changes in volatility indices: VIX CBOE (S&P 500),
VSTOXX (EURO STOXX 50), VHSI (Hong Kong) and VNKY (Nikkei). The considered period
is from 20 December 2002 to 6 October 2017.
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estimate std. err. t–stat p-value

mean equation

(constant) 0.0010 0.0010 1.0200 0.3090
rt−1 -0.0277 0.0406 -0.6800 0.4950
log(ht−1) 0.2719 1.5517 0.1800 0.8610

∆HINDt−1 -0.1329 0.0339 -3.9200 0.0000
∆HINDt−4 0.0965 0.0484 1.9900 0.0460

∆CISSt−1 0.0002 0.0227 0.0100 0.9940
∆CISSt−4 -0.0005 0.0228 -0.0200 0.9840
∆STLFSIt−1 0.0024 0.0094 0.2600 0.7950
∆STLFSIt−4 -0.0083 0.0112 -0.7400 0.4590

volatility equation

(constant) -0.1560 0.0490 -3.1900 0.0010
zt−1 -0.1395 0.0152 -9.1700 0.0000
|zt−1| − E|zt−1| 0.0582 0.0221 2.6300 0.0090
log(ht−1) 0.9796 0.0065 149.6100 0.0000

obs 767 Wald χ2(8) 18.57
Log–likelihood 1781.07 Prob> χ2 0.0173

Table 7: Estimates for the AR(1)–EGARCH–m(1,1) model by including the (lagged) changes
in the Hubs indicator ∆HINDt and the changes in financial stress indicators such as the CISS
and the STLFSI. The considered period is from 20 December 2002 to 6 October 2017.
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estimate std. err. t–stat p-value

mean equation

(constant) 0.0008 0.0010 0.8200 0.4130
rt−1 -0.1105 0.0931 -1.1900 0.2350
log(ht−1) 0.4977 1.4337 0.3500 0.7280

∆HINDt−1 -0.1432 0.0339 -4.2300 0.0000
∆HINDt−4 0.1077 0.0487 2.2100 0.0270

Mkt-Rft−1 0.0672 0.1052 0.6400 0.5230
SMBt−1 0.0216 0.1094 0.2000 0.8440
MHLt−1 0.1028 0.1354 0.7600 0.4480
RMWt−1 -0.2065 0.1883 -1.1000 0.2730
CMAt−1 -0.0113 0.1911 -0.0600 0.9530

volatility equation

(constant) -0.1603 0.0528 -3.0300 0.0020
zt−1 -0.1452 0.0153 -9.5000 0.0000
|zt−1| − E|zt−1| 0.0507 0.0234 2.1700 0.0300
log(ht−1) 0.9791 0.0071 138.6100 0.0000

obs 767 Wald χ2(9) 24.00
Log–likelihood 1782.43 Prob> χ2 0.0043

Table 8: Estimates for the AR(1)–EGARCH–m(1,1) model by including the (lagged) changes
in the Hubs indicator ∆HINDt and the Fama and French five factors (Fama and French, 2015).
The considered period is from 20 December 2002 to 6 October 2017.
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