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How households consume and save over the life-cycle and how time preferences as well as 

the time horizon affect these decisions are classical economic questions. According to 

numerous studies on subjective survival beliefs, young people (younger than about 65) 

underestimate whereas old (older than about 70) people overestimate their survival chances 

on average. Another phenomenon is that, on average, young people undersave whereas old 

people oversave and hold on to their assets too long in life when compared to the optimal 

behavior under rational survival expectations. Hence, relative to this rational benchmark, the 

data on actual savings behavior are “puzzling”.  

Intuitively, one would conjecture that the observed age-dependent biases between perceived 

and objective survival chances are an important explanation for these saving puzzles. The 

reason is that individuals who do not expect to live for long will consume in the present rather 

than save for the future to the effect that underestimation of survival chances at young age 

should give rise to undersaving early in life. Conversely, overestimation of survival chances 

at an old age should lead to oversaving later in life, so that individuals also hold on to their 

assets until too late in life.  

The main objective of our paper is to develop an economic theory based on a life-cycle model 

with biased survival beliefs to investigate whether this conjecture is correct. We show that 

biased beliefs may, but need not necessarily, resolve the saving puzzles. While 

overestimation of survival beliefs in old-age induces households to save more than they would 

under rational survival beliefs, this oversaving must be sufficiently pronounced so that also 

the old-age stock of asset holdings exceeds the respective asset holdings under rational 

expectations. At the same time, with forward looking behavior, this overestimation should not 

be too pronounced because otherwise the optimizing households would anticipate this 

overestimation at old-age and rather undersave at a young age. 
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Abstract

On average young people “undersave” whereas old people “oversave” with

respect to the rational expectations model of life-cycle consumption and sav-

ings. According to numerous studies on subjective survival beliefs, young people

also “underestimate” whereas old people “overestimate” their objective sur-

vival chances on average. We take a structural behavioral economics approach

to jointly address both empirical phenomena by embedding subjective survival

beliefs that are consistent with these biases into a rank-dependent utility (RDU)

model over life-cycle consumption. The resulting consumption behavior is dy-

namically inconsistent. Considering both naive and sophisticated RDU agents

we show that within this framework underestimation of young age and overes-

timation of old age survival probabilities may (but need not) give rise to the

joint occurrence of undersaving and oversaving. In contrast to this RDU model,

the familiar quasi-hyperbolic discounting (QHD), which is nested as a special

case, cannot generate oversaving.
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1 Introduction

How households consume and save over the life-cycle and how time preferences as

well as the time horizon affect these decisions are classical economic questions. The

workhorse model to address this problem of inter-temporal allocation is the life-cycle

model of Modigliani and Brumberg (1954) and Ando and Modigliani (1963). This

standard model considers an expected utility maximizing agent with an additively

separable per period utility function. The agent’s future utility is discounted by

an effective discount factor comprised of the pure rate of time-preference and her

belief to survive into the future. Since the pioneering work of Samuelson (1937),

pure time-preferences are typically described by an exponential discount function.

Following Muth (1961) it has also become standard to express survival beliefs as

objective survival probabilities. This standard rational expectations (RE) life-cycle

model gives rise to three well established saving puzzles: compared to the RE model,

households in the data save too little at young age (undersaving), cf., e.g., Laibson

et al. (1998) and Bernheim and Rangel (2007), and hold on to their assets until

too late in life (oversaving, respectively high old-age asset holdings), cf., e.g., De

Nardi et al. (2010), Hurd and Rohwedder (2010) and Lockwood (2012). In addition,

there is ample empirical evidence for dynamically inconsistent savings behavior, again

see Laibson et al. (1998) and Bernheim and Rangel (2007).1

Our main objective is to develop a behavioral theory that can jointly accommodate

these savings puzzles. The point of departure of our analysis is the robust finding

from survey data on subjective survival beliefs that “young” respondents (younger

than about 65) tend to underestimate whereas “old” respondents (older than about

70) tend to overestimate their survival chances (Hammermesh 1985; Manski 2004;

Gan et al. 2005; Peracchi and Perotti 2010; Elder 2013; Ludwig and Zimper 2013).

Intuitively, one would conjecture that such age-dependent biases between perceived

and objective survival chances are an important driver of the empirically observed

savings puzzles. After all, individuals who do not expect to live for long will consume

in the presence rather than save for the future to the effect that underestimation of

survival chances at young age should give rise to undersaving early in life. Conversely,

overestimation of survival chances at an old age should lead to oversaving later in life

1Also see Barsky et al. (1997), Angeletos et al. (2001), Choi et al. (2006) and Lusardi and
Mitchell (2011).
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because we would expect that such overly optimistic individuals transfer more wealth

to their future than their rational expectations counterparts.

To rigorously analyze this conjecture, we incorporate a model of subjective survival

beliefs into a variant of a life-cycle model of consumption and savings. Specifically, we

consider a simple transformation of objective survival beliefs, whereby a likelihood-

insensitivity parameter controls the decision weight on objective survival information.

The higher is the likelihood insensitivity, the less relevant are objective survival rates

for economic decisions. In presence of such likelihood insensitivity a second optimism

parameter governs the strength of underestimation versus overestimation of survival

chances. We show that this two-parameter transformation of objective survival be-

liefs can easily replicate the age-dependent survival belief biases reported in survey

data. Such a transformation is known as a neo-additive probability weighting func-

tion which is popular in the literature because it approximates in a parsimonious way

the inverse S-shaped probability weights typically elicited in experimental prospect

theory (Kahneman and Tversky 1979; Tversky and Kahneman 1992).2

Next, we assume that in presence of risky survival chances individuals prefer longer

consumption streams (longer horizons) to shorter ones. This natural notion gives rise

to a rank dependent utility (RDU) (cf. Quiggin 1981, 1982) life-cycle model defined

over gains that arise from consumption streams.3 Since RDU and prospect theory

coincide on the domain of gains, our model stands for an application of prospect

theory to life-cycle consumption with survival risk.4 We further assume additive

separability with exponential time-discounting and per-period utility functions that

are of the power form featuring a constant inter-temporal elasticity of substitution

(IES). We show that using neo-additive survival beliefs in this RDU model gives rise

to dynamically inconsistent consumption behavior. That is, future consumption plans

generally deviate from present plans for these future periods.

Our choice of a neo-additive probability weighting function results in an analyti-

2Cf., e.g., Abdellaoui et al. (2011). Wakker (2009, p. 208-2010) discusses in depth RDU models
with neo-additive probability weighting functions (also see the references therein).
For an axiomatic foundation of neo-additive probability measures within Choquet expected utility
theory (Gilboa 1987; Schmeidler 1989) see Chateauneuf et al. (2007).

3See Quiggin (1993) for a textbook treatment. As Machina (1994) observes in a review of this
book the “publication history of the rank-dependent expected utility model attests to its role as the
most natural and useful modification of the classical expected utility formula.”

4In addition, our RDU model with a neo-additive probability weighting function can also be
regarded as a formal special case of security- and potential level models which generalize expected
utility under risk without any reference to probability weighting (Cohen 1992; Essid 1997).
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cally very tractable model enabling us to characterize the entire solution of the opti-

mization problem of naive and sophisticated RDU agents in a multi-period life-cycle

model in closed form. This tractability is useful when we compare the decision prob-

lems of naive and sophisticated RDU agents to other nested models. The tractability

pays off in particular when we employ a three-period variant of our model to com-

pare under- versus overestimation of survival beliefs to conditions for under- versus

oversaving in terms of the single optimism parameter.

In terms of related models, first, our RDU model falls under the class of models

with general discount functions initiated by Strotz (1955) and Pollak (1968). In

particular, we revisit an important equivalence result derived in Pollak (1968), namely

that consumption behavior of naive and sophisticated agents coincide for a logarithmic

per period utility function. We provide a new interpretation for this finding. For the

three-period variant of our model we also establish that the sophisticated agent saves

more (less) than the naive agent in the first period of life when the IES is less than

one (above one). In our numerical analysis of that model variant we further show

that these differences become stronger when likelihood insensitivity is large and the

IES is low. In quantitative work, this insight might be useful to differentiate between

naive and sophisticated agents, respectively to identify the degree of sophistication.

Second, we show that our RDU model nests the familiar quasi-hyperbolic time

discounting (QHD) model made popular by Laibson (1997) as a special case. QHD

models introduce a short-run discount factor between the present and the first future

period which is lower than the discount factor between any other two future subse-

quent periods thereby giving rise to diminishing impatience in the form of short-run

impatience.5 Applied to a life-cycle model, this short-run impatient QHD decision

maker becomes formally equivalent to a neo-additive RDU decision maker who is

extremely pessimistic in the sense that her optimism parameter takes on the value

zero. To the best of our knowledge, the closed form solutions and interpretations we

provide for the multi-period model are also novel to the QHD literature. For the gen-

eral parametrization with non-zero optimism parameter, one crucial difference to this

nested QHD model emerges: the QHD model naturally gives rise to undersaving but

not to oversaving, hence the QHD model cannot simultaneously address both savings

5Quasi-hyperbolic discounting is therefore in line with overwhelming experimental evidence that
reports a conflict between decision makers’ long-run desire to be patient and their short-run desire
for instantaneous gratification. See, e.g., Ainslie (1992), Loewenstein and Thaler (1989), Laibson
(1997), Laibson 1998.
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puzzles. This aspect is therefore an important dimension along which the two models

are not observationally equivalent. Also, Halevy (2015) presents experimental data

according to which time-variant preferences are empirically more relevant than time-

invariant preferences as presumed by the QHD model. Since the RDU preferences of

our life-cycle model are time-variant if, and only if, they do not reduce to QHD (or

RE) preferences, we regard Halevy’s (2015) finding as independent empirical evidence

in favour of a general RDU life-cycle model that cannot be reduced to a QHD model.

With respect to the implications of biased survival beliefs for savings behavior in

our general RDU model, our closed form solutions establish two main results. We

derive these results by employing the three-period variant of our model for which

we present clear-cut analytical conditions. First, overestimation of old age survival

chances is sufficient and necessary for oversaving at an old age. Second, in presence

of old age overestimation, sufficiently strong underestimation of survival chances at

young age results in undersaving at young age. The details of this latter result

crucially depend on whether the agent is aware of her dynamically inconsistent RDU

preferences (i.e., sophisticated) or not (i.e., naive). A combination of both results

pins down parameter conditions for which underestimation at young combined with

overestimation at old ages generates undersaving at young combined with oversaving

at old ages.

This analytical characterization of savings behavior in the RDU model refers to

undersaving and oversaving in terms of the flow of savings but not in terms of the

stock of asset holdings. Yet, the previously cited quantitative life-cycle literature also

tries to understand high old age asset holdings, which results from persistent oversav-

ing relative to the RE benchmark model. In our context, where biases in subjective

survival beliefs are the key driver of savings behavior, high old-age asset holdings

emanate simultaneously with undersaving at young age if overestimation of survival

beliefs is sufficiently strong so that oversaving in old age eventually dominates un-

dersaving at young age. We show this through a simple numerical analysis, again

for the three-period variant of our model, thereby establishing that the RDU model

may contribute to explaining the empirical phenomena of undersaving, oversaving and

high old-age asset holdings. Observe that there is an important tension regarding the

biases in survival beliefs: On the one hand, to generate undersaving at young age in

presence of underestimation of survival chances at young age and overestimation at

old age, underestimation of survival probabilities must be sufficiently strong. It must
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dominate the effects of old age overestimation on young age savings behavior for for-

ward looking agents who anticipate that they will overestimate survival probabilities

eventually. On the other hand, to simultaneously generate high old age asset hold-

ings, overestimation must be strong enough. Eventually, it must dominate the effects

of underestimation on asset holdings. How these tensions play out are quantitative

questions which we address in Groneck, Ludwig, and Zimper (2016).

Our analysis will provide useful guidance for quantitative work to distinguish

between different, partially nested, behavioral models of life-cycle consumption, both

on qualitative (with respect to our RDU model versus the standard QHD model) as

well as on quantitative grounds (with respect to the degree of sophistication).

The remainder of our analysis proceeds as follows. Section 2 revisits the key

stylized facts on biases in survival perceptions and introduces neo-additive survival

beliefs. Section 3 constructs our RDU life-cycle model and Section 4 solves for the

consumption behavior for a multi-period RDU life-cycle model in closed form. Sec-

tion 5 employs a three-period variant of our model to revisit the aforementioned

savings puzzles. Section 6 complements our analytical results by numerical analyses.

Section 7 concludes with a discussion of our main results and an outlook on possible

avenues for future research. All formal proofs are relegated to the Appendix and a

Supplementary Appendix contains additional results.

2 Misperceptions of Survival Chances

This section revisits the key stylized facts of survival misperceptions by documenting

biases measured in the Health and Retirement Study (HRS). We then proceed with

our theoretical framework which applies neo-additive probability weighting functions

to objective survival probabilities. We show that for suitable values of the decision

maker’s degree of optimism such neo-additively transformed survival probabilities

naturally result in underestimation of survival chances at young and overestimation

at old age, just as observed in the data.
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2.1 Point of Departure: Stylized Facts

Figure 1 reports average differences between subjective survival rates as elicited in the

Health and Retirement Study (HRS) and objective cohort survival rates by age.6 Each

data point represents the average bias in long-run survival chances: It measures the

average distance between the subjective belief to survive from the age at interview—

depicted on the abscissa—to some target age which is several years ahead. The data

pattern mirrors findings in numerous empirical studies on subjective survival beliefs,

cf. Groneck, Ludwig, and Zimper (2016) and references therein: Until the age of

about 70, respondents underestimate whereas later in life they overestimate their

chances to survive into the future.7 These biases are relatively large. For example, on

average 50 year old respondents in the sample underestimate their chances to survive

until age 80 by about 15 percentage points whereas 85 year old respondents on average

overestimate their chances to survive until age 95 by roughly 18 percentage points.

2.2 Theoretical Framework: Neo-additive Survival Beliefs

Consider an agent of age h ≥ 0 and fix some T ≥ h with the interpretation that the

agent possibly lives until the maximal age of T . We construct the additive probability

space (Ω,F , ψ) such that the state space is given as Ω = {1, . . . , T} and the σ-algebra

F is given as the powerset of Ω. We interpret Dt ≡ {t} , t ∈ Ω as the event in F that

the agent dies at the end of age t. Observe that Dt ∪ · · · ∪ DT stands for the event

in F that the agent of age h < t survives until (at least) the beginning of age t.

We interpret ψ as the objective (unconditional) probability measure that compre-

hensively governs the agent’s mortality risk. Denote by ψh the conditional probability

measure of an agent who has reached age h < T ; that is, for all A ∈ F ,

ψh (A) ≡ ψ (A ∩ (Dh ∪ · · · ∪DT ))

ψ (Dh ∪ · · · ∪DT )
.

As a notational convention, we write for the objective probability that an agent of

6Trends in life-expectancy are taking into account. A detailed description of the data is contained
in Ludwig and Zimper (2013), and Groneck, Ludwig, and Zimper (2016).

7This pattern is robust to more elaborate measures of objective survival probabilities. For ex-
ample, in Grevenbrock et al. (2016) we compute objective survival rates at the individual level
instead of using cohort life tables. Averaging differences between subjective beliefs and objective
probabilities across individuals by age gives rise to similar differences as those shown in Figure 1.
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Figure 1: Difference of Subjective Survival Beliefs and Cohort Data
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Notes: Deviations in percentage points of subjective survival probabilities from objective data based
on cohort life tables. Future objective data is predicted with the Lee-Carter procedure (Lee and
Carter 1992). Each bar depicts the difference of unconditional probabilities to survive to a specific
target age.
Source: Groneck, Ludwig, and Zimper (2016).

current age h survives until (at least) the beginning of age t > h

ψh,t ≡ ψh (Dt ∪ · · · ∪DT ) =
T∑
k=t

ψh (Dk) . (1)

Definition 1 Fix parameters δ ∈ [0, 1] and λ ∈ [0, 1]. A neo-additive probability

weighting function ν : [0, 1]→ [0, 1] satisfies, for all h and all A ∈ F ,

ν
(
ψh (A)

)
=


0 if ψh (A) = 0

δλ+ (1− δ)ψh (A) if ψh (A) ∈ (0, 1)

1 if ψh (A) = 1.

As notational convention we write νh,t ≡ δλ+ (1− δ)ψh,t for all ψh,t ∈ (0, 1).

The first parameter δ ∈ [0, 1] measures the deviation of the neo-additive belief from

the objective probability. One possible (cognitive) interpretation is that δ captures
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the empirical phenomenon of likelihood-insensitivity (cf. Wakker 2004). The second

parameter λ ∈ [0, 1] determines in how far the decision maker over- vs. underestimates

objective probabilities whenever δ > 0. Since δλ (resp. δ (1− λ)) corresponds in our

life-cycle model to the additional decision weight attached to the event in which the

decision maker lives until a maximally possible age (resp. already dies at the end of

the current period), we henceforth refer to λ as optimism parameter.

In the present paper, we choose neo-additive weighting functions because (i) they

naturally give rise to the age-dependent survival biases depicted in Figure 1 whereby

(ii) the mathematical formalism that describes such biases remains as parsimonious

as possible. To see this, observe that underestimation of survival chances at a young

age s is captured through a neo-additively transformed probability whenever we have

that

δλ+ (1− δ)ψs,s+1 < ψs,s+1. (2)

Conversely, overestimation of survival chances at an old age t > s corresponds to

ψt,t+1 < δλ+ (1− δ)ψt,t+1. (3)

Throughout this paper we consider the empirically relevant case of monotonically

strictly decreasing conditional survival probabilities, such that ψt,t+1 < ψs,s+1 when-

ever t > s. Neo-additively transformed survival probabilities thus generate underes-

timation at young age s combined with overestimation at old age t if, and only if,

δ > 0 whereby λ must satisfy

ψt,t+1 < λ < ψs,s+1. (4)

Based on the parsimonious characterization of empirically observed age-dependent

survival belief biases (4), we investigate in the remainder of the paper the relationship

between underestimation of survival chances and undersaving at young ages, on the

one hand, and overestimation of survival chances and oversaving at old ages, on the

other hand.
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3 Rank Dependent Utility (RDU) Life-Cycle Model

3.1 RDU Defined over Risky Consumption Streams

Recall the general definition of rank dependent utility.8 Denote by

x ≡ (ψ1 : x1, · · · , ψn : xn)

a risky prospect where ψk stands for the objective probability of deterministic out-

come xk. Under the assumption that the decision maker has the following preference

ranking over the deterministic outcomes

xn � . . . � x1,

the RDU of prospect x is defined as the following Choquet integral

RDU (x, ω) ≡
∑n−1

k=0 U (xn−k)
[
ω
(
ψn + . . .+ ψn−k

)
− ω

(
ψn + . . .+ ψn−k+1

)]
where U (·) is a continuous utility function and ω : [0, 1] → [0, 1] is a probability

weighting function that is increasing and satisfies ω (0) = 0 and ω (1) = 1.9

Turn now to our RDU life-cycle model for which risk exclusively arises from the

decision maker’s mortality risk. Hence, the decision maker’s life-cycle consumption is

risky because she does not know for how long she is going to live (i.e., to consume).

For a given age h, fix the consumption stream

(ch, ch+1, . . . , cT ) ∈ RT−h+1
+ (5)

whereby we assume that the ck, k ∈ {0, . . . , T}, of all consumption streams are

bounded away from zero. That is, we restrict attention to consumption streams for

which there exists an arbitrarily small but fixed ε > 0 such that ck ≥ ε for all

k ∈ {0, . . . , T}.10 Denote by ct ≡ (ch, ch+1, . . . , ct) the truncation of (5) that contains

8For early formulations of RDU see Quiggin (1981), Quiggin (1982), Yaari (1987),
and Chateauneuf (1999). Note that RDU is identical to cumulative propect theory (CPT) when-
ver (i) CPT is restricted to the domain of gains and (ii) the CPT decision maker faces objective
probabilities (cf., Tversky and Kahneman 1992).

9The standard convention ω
(
ψn + ψn+1

)
= 0 applies.

10By this restriction, we ensure that the values of our chosen CRRA period utility function remain
finite and do not approach minus infinity for ck → 0. (See our discussion of the role of the preference
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all consumption entries up to age t ≥ h. According to our interpretation, ct is the

deterministic outcome that the agent receives if she consumes in accordance with (5)

and dies at the end of age t. We call

c ≡
(
ψh (Dh) : ch, . . . , ψh (DT ) : cT

)
(6)

the h-old agent’s consumption prospect if she consumes in accordance with (5). We

further assume the following preference ranking over the deterministic outcomes of

(6):

cT � · · · � ch,

that is, we restrict attention to a decision maker who prefers for any given consump-

tion stream (5) to live (i.e., to consume) longer.

Definition 2 The RDU of consumption prospect c of an h-old agent with respect to

the probability weighting function ω is given as follows:

RDUh (c, ω) (7)

≡
T−h∑
t=0

U
(
cT−t

) [
ω
(
ψh (DT ) + . . .+ ψh (DT−t)

)
− ω

(
ψh (DT ) + . . .+ ψh (DT−t+1)

)]
where U (·) ∈ R+ denotes a continuous utility function satisfying

U
(
cT
)
≥ . . . ≥ U

(
ch
)

. (8)

Assumption 1 The utility of any truncated consumption stream ct is additively sep-

arable with exponential discount factor, i.e.,

U
(
ct
)

=
t∑

s=h

βs−hu (cs) (9)

where β ∈ (0, 1] is the pure time-preference discount factor and u : R+ → R+ is a

strictly increasing and strictly concave per period utility function.11

shifter in Assumption 4). This restriction will be without loss of generality when we determine the
(interior) solution to the optimal consumption stream as the optimal consumption will be strictly
greater zero in all periods.

11Note that we require of the per period utility function u(cs) ≥ 0 for all s to ensure that
condition (8) is satisfied.

11



Using the notational convention (1), we can transform (7) under Assumption 1:

RDUh (c, ω) =
T−h∑
t=0

U
(
cT−t

) [
ω
(
ψh,T−t

)
− ω

(
ψh,T−t+1

)]
=

T−h∑
t=0

T−t∑
s=h

βs−hu (cs)
[
ω
(
ψh,T−t

)
− ω

(
ψh,T−t+1

)]
= u (ch) +

T∑
t=h+1

ω
(
ψh,t
)
βt−hu (ct) . (10)

Assumption 2 The probability weighting function ω (·) is given as some neo-additive

probability weighting function ν (·).

Substituting a neo-additive probability weighting function ν (·) for ω (·) in (10)

immediately gives us the following characterization of the RDU defined over risky

consumption streams.

Theorem 1 Under Assumptions 1 and 2, the RDU (7) of consumption prospect c of

an h-old agent becomes

RDUh (c, ν) = u(ch) +
T∑

t=h+1

νh,tβ
t−hu (ct)

= u(ch) +
T∑

t=h+1

(
δλ+ (1− δ)ψh,t

)
βt−hu (ct) . (11)

We henceforth refer to (11) for h ∈ {0, . . . , T} as the RDU life-cycle model without

explicitly mentioning Assumptions 1 and 2. For the parametric special case δ = 0,

(11) reduces to the standard RE life-cycle model

Uh (c, ϕ) = u(ch) +
T∑

t=h+1

ψh,tβ
t−hu (ct) , (12)

which will serve as our natural reference model.

Remark 1 Without Assumption 1 but under Assumption 2 the RDU (7) of consump-

tion prospect c of an h-old agent with respect to the neo-additive probability weighting
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function ν would, more generally than (11), take on the following structural form (cf.

the proof of Proposition 2 in Groneck, Ludwig, and Zimper (2016))

δ
(
λU
(
cT
)

+ (1− λ)U
(
ch
))

+ (1− δ)
T−h∑
t=0

U
(
cT−t

)
ψh (DT−t) . (13)

Note that the optimism parameter λ measures in how far any deviation δ > 0 from

the rational expectations approach is resolved in a rather optimistic way: large values

of λ put large decision weights on the best possible outcome U
(
cT
)

according to which

the agent will achieve her maximally possible age T . In contrast, small values of λ

put large decision weights on the worst possible outcome U
(
ch
)

according to which

the agent will already die at the end of the current period.

Remark 2 An application of Cohen (1992)’s security and potential level model to

consumption prospects becomes under Assumption 2

a
(
ch, cT

) T−h∑
t=0

U
(
cT−t

)
ψh (DT−t) + b

(
ch, cT

)
(14)

where a
(
ch, cT

)
and b

(
ch, cT

)
are real-valued functions in (i) the worst possible con-

sumption stream ch (=security level) and (ii) in the best possible consumption stream

cT (=potential level).

Setting a
(
ch, cT

)
≡ (1− δ) and b

(
ch, cT

)
≡ δ

(
λU
(
cT
)

+ (1− λ)U
(
ch
))

shows

that the RDU model with neo-additive probability weighting (13) can be regarded a as

special case of Cohen’s security and potential level model (which furthermore satisfies

stochastic dominance, cf. Proposition 5 in Cohen (1992), as well as continuity).12

Remark 3 Our RDU life-cycle model is related to similar models in Bleichrodt and

Eeckhoudt (2006), Halevy (2008) and Drouhin (2015). The RDU representation (10)

for a 0-old agent already appears in Bleichrodt and Eeckhoudt (2006) (cf. Equation (8)

12By a similar argument, the RDU model (13) becomes for an extremely pessimistic RDU decision
maker with λ = 0 a formal special case of the security level models considered in Gilboa (1988) and
Jaffray (1988) for which only the worst possible outcome of a risky prospect, here ch, matters in
addition to the prospect’s expected utility. See also the discussion in Section 3.2 which establishes
the formal equivalence between a RDU life-cycle model with λ = 0 and a life-cycle model with
quasi-hyperbolic time discounting.
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therein).13 More restrictively than these authors, Halevy (2008) derives the following

RDU representation for a 0-old agent (Theorem 2 in Halevy 2008)

RDU0 (c, ω) = u(c0) +
T∑
t=1

ω
(
(1− κ)t

)
βtu (ct) , (15)

where κ ∈ (0, 1) denotes a constant hazard rate. Denote by ψ̄0,t = (1− κ)t the additive

survival probability from age h = 0 to t ≥ 1 to see that Halevy (2008)’s representation

is a special case of (10) under the assumption that objective survival probabilities

exhibit a constant hazard rate, i.e.,

ψh,h+1 = 1− κ (16)

for all ages h. The constant hazard rate assumption (16) is, however, not supported by

the data. Also, Halevy (2008)’s representation (15) cannot express underestimation

at a young age combined with overestimation at an old age; (to see this note that (4)

holds under (16) with equality).14

3.2 Discussion: Quasi-Hyperbolic Time Discounting

Recall that hyperbolic discounting models (cf. Strotz (1955) and Pollak (1968)) de-

scribe agents who are more sensitive to a given time delay if it occurs closer to the

present than if it occurs farther in the future. The weaker concept of quasi-hyperbolic

discounting (QHD), first proposed by Phelps and Pollak (1968) and made very popu-

lar in the behavioral economics literature by Laibson (1997), assumes that agents are

sensitive to a time delay with respect to the present period only. More specifically,

13Bleichrodt and Eeckhoudt (2006) also solve the RDU life cycle model for the optimal consump-
tion stream. As a drawback of their solution, however, they ignore the dynamic inconsistency of (10)
for h = 0, . . . , T . Therefore, their Theorem 5 is based on the planned consumption stream of a naive
RDU agent which does (typically) not coincide with the actual consumption behavior whenever the
RDU agent does not reduce to a RE agent (cf. our detailed discussion in Section 4).

14Halevy writes: “Although the constant probability of stopping (hazard) assumption is main-
tained throughout this paper, it can be easily relaxed—resulting in a more general (but less tractable)
representation.” (Footnote 2 in Halevy (2008)). The advantage of our neo-additive RDU life-cycle
model (11) is exactly its highly tractable representation without any need to impose restrictions on
additive survival probabilities.
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define the QHD discount factors

{
1, γβ, γβ2, γβ3, . . . γβT

}
, (17)

where 0 < γ, β < 1, where γ denotes the short term discount factor.

Consider at first a QHD decision maker whose survival beliefs coincide with ob-

jective survival probabilities. By Assumption 1, the utility of consumption plan c

becomes for this QHD decision maker of age h

Uh
QHD (c, ψ) = u(ch) +

T∑
t=h+1

ψh,tγβ
t−hu (ct) . (18)

Obviously, the QHD utility representation (18) is formally equivalent to the special

case of our RDU representation (11) for λ = 0 and 1− δ = γ, i.e.,

νh,t = γψh,t. (19)

The life-cycle model of a RDU decision maker who is extremely pessimistic, i.e., λ = 0,

about her survival chances can thus not be distinguished from the life-cycle model of

a QHD decision maker who holds correct survival beliefs but discounts the future in

accordance with (17).

Next, consider the RDU life-cycle model (11) with parametrization δ = 1 and λ ∈
(0, 1) implying

νh,t = λ. (20)

Setting λ = γ shows that this RDU life-cycle model is formally equivalent to a QHD

model without mortality risk

Uh
QHD (c) = u(ch) +

T∑
t=h+1

γβt−hu (ct) . (21)

That is, life-cycle models of RDU decision makers with extreme likelihood insensitiv-

ity, i.e., δ = 1, cannot be distinguished from deterministic QHD life-cycle models and

vice versa.

Finally, notice that the RDU life-cycle model (11) collapses for the degenerate
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parametrization

δ = λ = 1 (22)

to the standard deterministic life-cycle model with exponential discounting. Since

this well-understood deterministic special case is of no interest to us, we exclude the

parametrization (22) from the remainder of our analysis.

Remark 4 There exists an interesting discussion in the theoretical and experimen-

tal literature about whether hyperbolic time discounting is conceptually nothing else

than rank dependent decision making under an uncertain stopping time as, e.g., rep-

resented by mortality risks (cf., e.g., Halevy (2008) and Epper et al. (2011) as well

as references therein). Although QHD life-cycle models can, by (18) and (21), be

formally subsumed under our RDU life-cycle model, we do not claim that hyperbolic

time discounting reduces in general to rank dependent decision making.

Remark 5 Interpreted in terms of Halevy (2015)’s properties of time preferences,

RDU preferences are non-stationary as well as time-inconsistent whenever they do not

reduce to expected utility preferences. Moreover, RDU preferences are time-invariant

if, and only if, the neo-additive beliefs satisfy

ν0,3

ν0,2

=
ν1,3

ν1,2

⇔
λδ + (1− δ)ψ0,3

λδ + (1− δ)ψ0,2

=
λδ + (1− δ)ψ1,3

λδ + (1− δ)ψ1,2

. (23)

But (23) only holds for δ = 0, for λ = 0, or for δ = 1. That is, our RDU-life cycle

model becomes time-invariant if, and only if, it reduces to either the RE- or the QHD

model. Halevy (2015) reports experimental data according to which time-variance

is more common among decision makers with non-stationary and time-inconsistent

preferences than time-invariance. We interpret Halevy’s finding as empirical evidence

in favour of a general time-variant RDU life-cycle model over the nested special case

of a time-invariant QHD life-cycle model.
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4 Solving the Model

4.1 Additional Assumptions

We assume that there exists an initial amount of total wealth that can be spend over

the life-cycle. There is no borrowing constraint in the model so that total wealth is

the sum of financial wealth, current period labor income and human capital wealth,

which is the discounted value of current and future labor income.

Assumption 3 The budget constraint is given by

wt+1 = (wt − ct)R for t ∈ {0, 1, . . . , T − 1} . (24)

for initial wealth w0 > 0 and market return R ≥ 1. In addition the standard no-Ponzi

condition applies, hence wT+1 ≥ 0.

For analytical convenience, we restrict attention to the family of power utility

functions with a constant inter-temporal elasticity of substitution (IES), also known

as constant relative risk aversion (CRRA) utility functions.15

Assumption 4 The period-utility function for an IES of 1
θ

is given as

u (c) = χ+

 c1−θ

1−θ for θ 6= 1, θ > 0

ln(c) for θ = 1.
χ ≥ 0 (25)

The additive preference shifter χ is irrelevant for the standard EU framework with

additive beliefs. However, for our RDU framework a value of χ needs to be chosen such

that the period utility function u (c) is always non-negative. Else, condition (8) would

break down to the effect that, contrary to our interpretation, the consumer might

prefer dying earlier than living longer so that the RDU representation of Theorem 1

would no longer apply. For θ < 1 the per period utility function is positive so that χ

can be set to zero. For θ ≥ 1, χ must take on a sufficiently large value.16

15We prefer the interpretation of 1
θ as the IES over the interpretation of θ as a measure of risk

aversion (which is the coefficient of relative risk aversion in an atemporal context). While risk-
aversion is comprehensively characterized by the concavity of the vNM utility function for an ex-
pected utility decision maker, this is no longer the case for a RDU decision maker because probability
weighting additionally reflects risk attitudes, cf. Hong, Karni, and Safra (1987),Wu and Gonzalez
(1996),Chateauneuf and Coen (2000).

16Given that our programming problem is convex (see below), the additive preference shifter does
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4.2 Characterization of the Solution for Three Types

Under the above assumptions we derive analytical solutions for consumption Eu-

ler equations (consumption growth rates) and consumption policy functions for three

agent types, indexed by i ∈ {r, n, s}, which we subsequently interpret in Section 4.3.17

As our benchmark case, we consider RE agents (indexed by r) who base their de-

cisions on objective survival beliefs ψt. In contrast to RE agents, (non-degenerate)

RDU agents exhibit dynamically inconsistent preferences. That is, from an ex ante

perspective a RDU agent would prefer a different choice of future consumption than

her future self who actually makes this choice.

To model how RDU agents cope with this dynamic inconsistency, we distinguish

between naive and sophisticated agents. Naive RDU agents (indexed by n) are, and

remain, completely unaware of their dynamically inconsistent preferences. For them

planned and realized consumption streams will therefore (in general) differ except for

the current period. Sophisticated RDU agents (indexed by s) fully understand the

diverging preferences of their future selves. Moreover, they correctly anticipate how

their current consumption choice will impact on the consumption behavior of their

future selves. In contrast to naive RDU agents, sophisticated RDU agents thus want

to influence future consumption behavior in their favor through the impact of their

current consumption choice on future budget constraints.

In what follows, we denote by cit the actual period t consumption behavior of

an agent of type i ∈ {r, n, s}. To keep track of the difference between planned and

actual future consumption of the naive agent, we write cn,ht for the planned period

t ≥ h consumption of the naive agent from her current perspective at age h whereby

cn,hh = cnh is the actual consumption of the naive agent at age h.

Theorem 2 The consumption policy functions of all agents of type i ∈ {r, n, s} and

age h ∈ {0, . . . , T} are linear in total wealth, i.e., cih = mi
hwh, whereby the marginal

propensity to consume (MPC) is given at the final age as mi
T = 1. For all other ages

not affect the solution. Upon characterizing the solution one can therefore determine ex-post from
the optimal consumption stream some value for χ such that condition (8) holds. More precisely, for
θ ≥ 1 we can pick any ε > 0 that is strictly smaller than all optimal period consumption levels and

set χ = − ε
1−θ

1−θ .
17In Groneck, Ludwig, and Zimper (2016) we characterize the solution for a stochastic model and

a general concave utility function using a slightly different representation of survival beliefs. For
convenience of the reader we restate this solution in Appendix B.1 for the RDU model of the present
paper.
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h < T we obtain the following MPCs recursively:

1. for the RE agent

mr
h =

1

1 +
(βR1−θψh,h+1)

1
θ

mrh+1

; (26)

2. for the planned18 consumption of the naive RDU agent for all t ≥ h

mn,h
t =

1

1 +

(
βR1−θ νh,t+1

νh,t

) 1
θ

mn,ht+1

; (27)

3. for the sophisticated RDU agent

ms
h =

1

1 +
(βR1−θνh,h+1(Θh+1+ξh+1))

1
θ

msh+1

(28)

where

Θh+1 ≡ ms
h+1 +

νh,h+2

νh,h+1 · νh+1,h+2

(
1−ms

h+1

)
≥ 1, (29)

ξh+1 ≡ βR1−θ νh,h+2

νh,h+1

(
1−ms

h+1

)1−θ
msθ

h+1

(
ζhh+2 − ζh+1

h+2

)
≥ 0 (30)

ζht =

1 for t = T

ms1−θ
t + β

νh,t+1

νh,t
(1−ms

t)
1−θζht+1 otherwise.

(31)

The analytical characterization for RE and naive RDU agents directly follows from

the analysis in Samuelson (1969) which is based on the insight that the combination of

multiplicative dynamic budget constraints of the form in (24) with homothetic utility

functions gives rise to linear policy functions of consumption. While the solution

for the sophisticated RDU agent’s problem is slightly more involved, the closed form

expressions stated in Theorem 2 are also due to these properties.

Before we give a detailed interpretation of the consumption behavior of the differ-

ent agent types, let us state the intertemporal Euler equations corresponding to the

MPCs derived in Theorem 2.

18Recall that planned consumption of the naive type coincides with actual consumption for t = h.
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Corollary 1 The consumption growth rates are, for all h < T ,

1. for the RE agent
crh+1

crh
=
(
βψh,h+1R

) 1
θ ; (32)

2. for the planned consumption of the naive RDU agent for all t ≥ h

cn,ht+1

cn,ht
=

(
β
νh,t+1

νh,t
R

) 1
θ

; (33)

3. for the sophisticated RDU agent

csh+1

csh
=
(
βνh,h+1R

(
Θh+1 + ξh+1

)) 1
θ . (34)

4.3 Interpretation

4.3.1 The Naive Agent

Whenever our RDU life-cycle model (11) does not reduce to the RE model (12),

i.e., whenever δ > 0, the life-cycle utility maximization problem becomes dynami-

cally inconsistent. This can be seen from the discrepancy between the h-old naive

agent’s plan for future consumption and her actual future consumption path. The

planned consumption path, represented by the intertemporal Euler equation (33),

would maximize the h-old RDU agent’s life-cycle utility regardless of whether she is

naive or sophisticated. That the naive agent’s actual future consumption path will

be deviating from this plan is an expression of the fact that the RDU agent’s future

selves have different preferences about future consumption than the h-old agent.

To be more specific, observe that the first-order condition for period h + 1 from

the perspective of period h must, by equation (33), satisfy

cn,hh+2

cn,hh+1

=

(
βR

νh,h+2

νh,h+1

) 1
θ

.

When the naive agent turns age h+ 1, the corresponding condition from the perspec-

tive of period h + 1 becomes
cn,h+1
h+2

cn,h+1
h+1

= (βRνh+1,h+2)
1
θ . Dynamic consistency requires

that the marginal valuation of consumption in the two subsequent periods for agents
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of age h and h+ 1 must be the same, i.e.,

νh,h+2

νh,h+1

= νh+1,h+2 ⇔
δλ+ (1− δ)ψ

h,h+2

δλ+ (1− δ)ψ
h,h+1

= δλ+ (1− δ)ψh+1,h+2.

However, this is (generically) only the case for δ = 0 because
ψ
h,h+2

ψ
h,h+1

= ψh+1,h+2.

Using the closed form solutions, we can characterize the discrepancy between the

optimal plan for period h+1 consumption from the h-old agent’s perspective and the

actual consumption in period h+ 1 as follows:

Proposition 1 The naive RDU agent consumes more in period h+1 than originally

planned at age h, i.e.,

mn,h
h+1 < mn,h+1

h+1 = mn
h+1 ⇔ cn,hh+1 < cn,h+1

h+1 = cnh+1.

The proof of the proposition proceeds in two steps. First, we derive an important

sufficient condition for which the naive RDU agent ends up saving less (consuming

more) at age h + 1 than she planned to save at age h. Since we relate back to this

sufficient condition we state it explicitly:

νh,h+2

νh,h+1νh+1,h+2

> 1. (35)

In a next step, we establish that condition (35) always holds in our non-degenerate

(i.e., δ > 0) RDU model.

Remark 6 Importantly, condition (35) also holds in the QHD model. As we estab-

lished in the discussion of Section 3.2, our RDU model embeds the QHD model as the

special parameterizations δ ∈ (0, 1), λ = 0 as well as δ = 1, λ ∈ (0, 1). In the first

case, condition (35) is equal to 1
1−δ > 1, in the second it is equal to 1

λ
> 1. Therefore,

in terms of the revisal of the naive RDU agent’s plan, our model qualitatively shares

the same dynamics as the QHD model.

4.3.2 The Sophisticated Agent

Equation (28) is the solution to the sophisticated agent’s problem who understands

her dynamically inconsistent preferences. To interpret the solution for the sophis-

ticated agent, again recall from the discussion in Section 3.2 that our RDU model
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becomes formally equivalent to variants of QHD models for the degenerate param-

eterizations λ = 0, δ ∈ (0, 1) and λ ∈ (0, 1), δ = 1. In this case, ξh = 0 for all t

and Θh+1 is the adjustment term in the Euler equation. The latter is familiar from

the QHD literature, cf. Harris and Laibson (2001), who label the adjusted Euler equa-

tion as generalized Euler equation. Formally, Θh+1 shows up because the standard

Envelope condition seizes to hold in a dynamic programming problem under dynamic

inconsistency. Because of (35), Θt+1 ≥ 1 as in the QHD model. The term reflects

the sophisticated RDU agent’s high marginal valuation of savings,
(
1−ms

h+1

)
, and

self h correspondingly expresses higher patience than according to the pure short-run

discount factor βνh,h+1. We label this the intertemporal smoothing motive of the

sophisticated agent to the effect that this motive implies higher savings compared

relative to the naive RDU agent.

Yet, Θh+1 is inversely related to next period’s marginal propensity to consume

(MPC), ms
h+1. If the marginal propensity of ones own future self will increase,

the sophisticated RDU agent decreases her consumption growth rate in the current

period, i.e., decreases savings thereby leaving fewer resources to her own future self.

We label this the constrain-ones-future-self motive. Notice that the two motives work

in opposite directions.

Our general case with λ ∈ (0, 1), δ ∈ (0, 1) implies that an additional adjustment

factor shows up in the sophisticated agent’s first-order condition, cf. Appendix B.1.

The reason for the appearance of this adjustment factor is that the continuation values

from the perspectives of an agent’s self h and her future self h+ 1 from periods h+ 2

onwards generally differ in our RDU model whereas they are identical in the QHD

model.19 This adjustment factor reflects the difference in the marginal value of wealth

from period t+ 2 onwards between selves t and t+ 1. In Theorem 2 this difference in

the marginal value from wealth between selves t and t+1 is reflected in term ξ+1 which

in turn involves the distance ζhh+2 − ζh+1
h+2, cf. equation (30). Our proof of Theorem 2

establishes that this distance measures the difference in current self h and future

self’s h + 1 marginal valuation of wealth in period h + 2. Because ζhh+2 − ζh+1
h+2 ≥ 0,

we have that self h’s marginal valuation of wealth in period h+ 2 is higher such that

19Discounting in the QHD model is geometric after age h+1 for the agent of age h and after age h+2
for the agent of age h + 1 so that they both apply the same discount function after age h + 2. By
only looking at the next period, quasi hyperbolic discounting models stand for a shortcut of proper
hyperbolic discounting models. Our RDU model shares with such proper hyperbolic discounting
models that discounting continues to be non-geometric for all future periods.
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that self h values savings from h + 1 to h + 2 more than future self h + 1. Hence,

savings are increased already at age h for the sophisticated agents.

4.3.3 Naive versus Sophisticated Agent

To compare the sophisticated agent to the naive agent, recall that for t = h + 1 we

have
νh,t+1

νh,t
= νh,h+1 so that the difference between planned consumption behavior of a

naive and actual consumption behavior of a sophisticated agent is due to Θh+1+ξh+1 ≥
1. This implies the following result:

Proposition 2 The sophisticated RDU agent’s actual consumption growth rate ex-

ceeds the planned consumption growth rate of the naive RDU agent at age h, i.e.,

csh+1

csh
≥
cn,hh+1

cnh
. (36)

with the inequality being strict in all periods h < T − 2 for which ξh+1 > 0 if δ ∈
(0, 1), λ ∈ (0, 1).

On the one hand, Proposition 2 establishes that actual consumption growth of

the sophisticated RDU agent generally exceeds planned consumption growth of the

naive RDU agent. On the other hand, Proposition 1 establishes that actual future

consumption of the naive RDU exceeds her planned future consumption, implying for

actual consumption growth of the two agents

csh+1

csh
T
cnh+1

cnh
, (37)

i.e., the consumption growth rate of the sophisticated agents can be smaller or larger

than consumption growth of the naive agent—and will be equal for a special case

discussed in the next section. The interplay between the opposing forces is best

understood by analyzing the consumption behavior in the first and second to last

periods, periods T − 1 and T − 2. For period T − 1 observe that ΘT = 1 (as well

as ξT+1 = 0) as well as ms
T = mn

T = 1. Hence, the consumption behavior of naive and

sophisticated agents coincide. In period T −2 we have ΘT−1 > 1 (and ξT−1 = 0). Due

to the inter-temporal smoothing motive consumption at age T −2 of the sophisticated

RDU agent is lower relative to the naive agent, i.e. the sophisticated agent saves more.

Contrary, the sophisticated agent anticipates the (excessive) consumption behavior
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of her own future self whereas the naive RDU agent does not, implying that ms
T−1 =

mn,T−1
T−1 > mn,T−2

T−1 (cf. Proposition 1). This induces the constrain ones future self

motive of the sophisticated agents according to which consumption at age T − 2 of

the sophisticated is higher relative to the naive RDU agent. The sophisticated agent

anticipates the overconsumption of her own future self and accordingly shifts fewer

resources to the future by consuming more in the present. Also notice that the two

effects interact: An increase of the MPC at age T−1, ms
T−1 = mn,T−1

T−1 , decreases ΘT−1

thereby reducing the inter-temporal smoothing effect. As will be discussed in Section

5.3.2, these observations imply that sophistication might even lead to lower savings if

the constrain ones future self motive dominates the inter-temporal smoothing motive.

Remark 7 Also with respect to the comparison between the naive and the sophisti-

cated agent, our model qualitatively shares the same dynamics as the QHD model.

4.4 Characterizing MPC Through Discount Functions: When

Sophisticates act Naive

We now present an alternative non-recursive characterization of these MPCs in terms

of discount functions. Since this characterization is central to our subsequent analysis

of young-age undersaving, we give it the status of a theorem.

Theorem 3 Let ρi(h, t) be the discount function for agent i ∈ {r, n, s} where

ρr(h, t) = βt−hψh,t,

ρn(h, t) = ρs(h, t) = βt−hνh,t.

Then the MPCs of Theorem 2 can be equivalently expressed as follows:

1. for the RE agent:

mr
h =


1 for h = T

1

1+
(∑T

t=h+1 ρ
r(h,t)(Rt−hmrt

∏t−1
j=h+1(1−mrj))

1−θ) 1
θ

for h < T
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2. for the naive RDU agent:

mn
h =


1 for h = T

1

1+
(∑T

t=h+1 ρ
n(h,t)(Rt−hmn,ht

∏t−1
j=h+1(1−mn,hj ))

1−θ) 1
θ

for h < T

3. for the sophisticated RDU agent:

ms
h =


1 for h = T

1

1+
(∑T

t=h+1 ρ
s(h,t)(Rt−hmst

∏t−1
j=h+1(1−msj))

1−θ) 1
θ

for h < T

The formulation of the MPCs in Theorem 3 in terms of discount functions explic-

itly shows that our RDU life-cycle model falls under a class of (“n-point”) discount-

ing models already considered in Pollak (1968). Remarkably, Pollak (1968) proves

for this class of discounting models that equilibrium consumption paths coincide for

sophisticated and naive RDU decision makers with logarithmic utility function. This

equivalence result for the special case of a logarithmic period utility function is triv-

ially implied by Theorem 3. To see this observe at first that the discount functions

of the naive and the sophisticated agents are identically given as βt−hνh,t. Next let

θ = 1 and observe that the naive and sophisticated types’ MPCs become, for h < T ,

mn
h = ms

h =
1

1 +
∑T

t=h+1 β
t−hνh,t

.

Corollary 2 The realized consumption paths of sophisticated and naive RDU agents

coincides for the logarithmic utility function, i.e., θ = 1.

This insight shares an interesting parallel to the familiar offsetting inter-temporal

substitution and income effects from changes in the interest rate R. Recall that

the inter-temporal substitution effect means that an increase of R—and thereby

a decrease of the relative price of consumption in the next (and all future) peri-

ods, q = 1/R—leads to an inter-temporal shifting of consumption expenditures so

that current period consumption falls. In contrast, the income effect means that a

decrease of the relative price of consumption also decreases the absolute price level

and so consumption increases in the current and future periods. For logarithmic

utility the two effects just cancel.
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The formal explanation for the opposing inter-temporal smoothing and constrain

ones future self motives to cancel each other out is directly related. Our closed form

solutions for the consumption policy functions rest on the combination of homothetic

preferences with a multiplicative dynamic budget constraint (24). For logarithmic

utility these multiplicative terms become additive in logs and thereby do not af-

fect consumption behavior. Rewriting the dynamic budget constraint in all periods

as wt+1 = (1−mt)wtR then readily establishes the formal analogy of changes in the

interest rate R and changes in marginal propensities to consume mt, respectively to

save, 1−mt. Beyond the mathematical equivalence result in Pollak (1968), our anal-

ysis thus offers an interpretation of this finding in terms of the two opposing motives,

which happen to cancel each other out for logarithmic utility.

Remark 8 Although the actual consumption behaviors of a naive and a sophisti-

cated RDU decision maker, respectively, coincide for the special case of a logarithmic

period-utility function, this does not mean that the RDU life-cycle model has suddenly

become dynamically consistent for a logarithmic period-utility function. Proposition 2

illustrates that the dynamic inconsistency of our RDU model is exclusively driven

by the neo-additive structure of the RDU discount function βt−hνh,t compared to the

dynamically consistent RE discount function βt−hψh,t.

5 Savings Puzzles Revisited

5.1 A Three-Period Variant of the Model

To investigate the relationship between survival beliefs and savings puzzles we need to

distinguish between young and old agents who are still uncertain about their future

survival. The simplest specification of the RDU life-cycle model that can address

the puzzles of under- and oversaving is therefore a three-period model (T = 2): at

age h = 0 the agent is young, at age h = 1 the agent is already old but still uncertain

about her future survival chances, at age h = 2 the agent knows for sure that she is

going to die at the end of the period.20

20The restriction to a three period model has an additional formal advantage. Recall from Sec-
tion 4.2 that the only difference between naive and sophisticated RDU agent’s marginal propensities
shows up in the first period of life (h = 0) and that ξ1 = 0, which simplifies the analysis for the
sophisticated agent.
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Without loss of generality we normalize initial wealth to one, w0 = 1. To further

simplify the analysis, we also set the gross interest rate to one, R = 1. The next

result then immediately follows from Theorem 2.

Proposition 3 As actual consumption behavior in the 3-period RDU life-cycle model,

we obtain from Theorem 2

1. for the RE agent:

cr2 = mr
2w

r
2 = 1− cr0 − cr1, (38)

cr1 = mr
1w

r
1 =

1

1 +
(
βψ1,2

) 1
θ

(1− cr0) , (39)

cr0 = mr
0w0 =

1

1 + (βψ0,1)
1
θ + (β2ψ0,2)

1
θ

, (40)

2. for the naive RDU agent:

cn2 = mn
2w

n
2 = 1− cn0 − cn1 , (41)

cn1 = mn
1w

n
1 =

1

1 + (βν1,2)
1
θ

(1− cn0 ) , (42)

cn0 = mn
0w0 =

1

1 + (βν0,1)
1
θ + (β2ν0,2)

1
θ

, (43)

3. for the sophisticated RDU agent:

cs2 = ms
2w

s
2 = 1− cs0 − cs1, (44)

cs1 = ms
1w

s
1 =

1

1 + (βν1,2)
1
θ

(1− cs0) , (45)

cs0 = ms
0w0 =

1

1 +
(

1 + (βν1,2)
1
θ

)1− 1
θ
(
βν0,1 + β2ν0,2(βν1,2)

1
θ
−1
) 1
θ

. (46)

By an application of Theorem 3, we obtain an alternative characterization of

the solution to the three-period model through the corresponding discount factor

notation:
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Proposition 4 Expressed in terms of the discount functions ρr(h, t) = βt−hψh,t

and ρn(h, t) = ρs(h, t) = βt−hνh,t the MPCs of the three-period RDU life-cycle model

are given as follows:

1. for the RE agent:

mr
2 = 1, (47)

mr
1 =

1

1 + (ρr(1, 2))
1
θ

, (48)

mr
0 =

1

1 +
(
ρr(0, 2) (mr

2 (1−mr
1))1−θ

) 1
θ

, (49)

2. for the naive RDU agent:

mn
2 = 1, (50)

mn
1 =

1

1 + (ρn (1, 2))
1
θ

, (51)

mn
0 =

1

1 +
(
ρn(0, 2)

(
mn,0

2

(
1−mn,0

1

))1−θ
) 1
θ

, (52)

where

mn,0
2 = 1 and mn,0

1 =
1

1 +
(
β ν0,2
ν0,1

) 1
θ

.

3. for the sophisticated RDU agent:

ms
2 = 1, (53)

ms
1 =

1

1 + (ρs (1, 2))
1
θ

, (54)

ms
0 =

1

1 +
(
ρs(0, 2) (ms

2 (1−ms
1))1−θ

) 1
θ

. (55)

The 3-period variant of our model gives rise to the following straightforward def-

initions of age-dependent undersaving and oversaving for a RDU decision maker in

terms of her MPCs. Whether these conditions hold depends on the values of the
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model parameters θ, δ, λ, ψ0,1, ψ1,2, β.

Definition 3 We say that the RDU decision maker of type i ∈ {n, s}

• oversaves at an old age if, and only if, mi
1 < mr

1,

• undersaves at a young age if, and only if, mi
0 > mr

0.

5.2 Oversaving at Old Age

We first turn to the characterization of oversaving at old age 1 in terms of biases in

survival beliefs. By Proposition 4, the MPCs of the naive and sophisticated agent

coincide at age 1, i.e., mn
1 = ms

1, so that the condition equally applies to both agents.

Proposition 5 Overestimation of survival chances at an old age is necessary and

sufficient for oversaving at an old age, i.e., the RDU decision maker oversaves at an

old age if, and only if, λ > ψ1,2.

Recall from the discussion in Section 3 that the QHD life-cycle model is nested

in our more general RDU life-cycle model as a special case for λ = 0. Since Proposi-

tion (5) requires λ > ψ1,2 > 0, we immediately obtain the following result:

Corollary 3 Oversaving is not possible in the QHD life-cycle model.

5.3 Undersaving at Young Age

We next derive conditions for undersaving at young age 0 whereby we keep the same

parameters θ, δ, λ, ψ0,1, ψ1,2, β fixed for the naive and the sophisticated agent. At first,

translate the condition in Definition 3 in terms of (derived) model parameters from

Propositions 3 and 4, respectively. Undersaving at young age occurs if, and only if,

we have for the naive RDU agent:

mn
0 > mr

0 (56)

⇔

ν
1
θ
0,1 + (βν0,2)

1
θ < ψ

1
θ
0,1 + (βψ0,2)

1
θ ; (57)
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and for the sophisticated RDU agent:

ms
0 > mr

0 (58)

⇔(
1 + (βν1,2)

1
θ

)
(

1 + (βν1,2)
1
θ

) 1
θ

(
ν0,1 +

ν0,2

ν1,2

(βν1,2)
1
θ

) 1
θ

< ψ
1
θ
0,1 + (βψ0,2)

1
θ . (59)

5.3.1 Naive Agent

Focus at first on the naive agent and observe that the LHS in (57) is strictly increasing

in the optimism parameter λ. This pins down the threshold level for the optimism

parameter, λn, that is necessary for young age undersaving of the naive agent:

Proposition 6 The naive RDU agent undersaves at a young age if, and only if,

λ < λn whereby λn satisfies

(
δλn + (1− δ)ψ

0,1

) 1
θ

+
(
β
(
δλn + (1− δ)ψ

0,2

)) 1
θ

= ψ
1
θ
0,1 + (βψ0,2)

1
θ . (60)

Corollary 4 The threshold level of the naive RDU agent satisfies the qualitative re-

lationship

λn ≤ ψ0,1. (61)

Thus, while underestimation of survival chances at age 0 by the naive agent is a

necessary condition for undersaving, such underestimation needs to be sufficiently

pronounced to generate undersaving.

To see this, let us analyze condition (57) directly. Underestimation of survival

chances at age 0, i.e., λ < ψ0,1 implies that ν0,1 < ψ0,1. However, it does not imply

ν0,2 < ψ0,2 which would otherwise be sufficient to generate undersaving. The reason

is that ν0,2 < ψ0,2 requires λ < ψ0,2 < ψ0,1. In other words, for a fixed λ the

relative underestimation of survival chances is stronger for the probability to survive

from age 0 to 1 than it is for the probability to survive from age 0 to age 2, i.e.,

ψ0,1 − λ > ψ0,2 − λ. In particular, for a λ such that ψ0,2 < λ < ψ0,1 there are two

forces working in opposite directions: (i) underestimation of survival from age 0 to

age 1 (λ < ψ0,1) leads to undersaving, (ii) overestimation of survival from age 0 to
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age 2 (λ > ψ0,2) leads to oversaving at age 0. Also notice that the second force

becomes stronger when β is increased.

5.3.2 Naive versus Sophisticated Agents

To prepare the discussion of the characterization of the threshold level for the opti-

mism parameter λs, which determines undersaving of the sophisticated RDU agent,

we compare savings behavior of the naive and the sophisticated RDU agent, which is

also of interest per se. Assume, for the moment, that the young sophisticated agent

has a smaller MPC than the young naive agent. By Proposition 4, we have that

ms
0 < mn

0 (62)

⇔
1

1 +
(
ρs(0, 2) (1−ms

1)1−θ
) 1
θ

<
1

1 +
(
ρn(0, 2)

(
1−mn,0

1

)1−θ
) 1
θ

(63)

⇔(
1−mn,0

1

)1−θ
< (1−ms

1)1−θ (64)

whereby the last step follows from ρs(0, 2) = ρn(0, 2). For θ < 1, (64) is equivalent

to mn,0
1 > ms

1 whereas, for θ > 1, (64) is equivalent to mn,0
1 < ms

1. Recall that, by

Proposition 1, mn,0
1 < mn,1

1 , whereas, by Proposition 4, mn,1
1 = ms

1, so that we always

have mn,0
1 < ms

1. Consequently, the relationship (62) is always satisfied for θ > 1 but

always violated for θ < 1.

Proposition 7 The following relationships hold for the MPCs of sophisticated and

naive agents as functions of θ:

ms
0 > mn

0 if θ ∈ (0, 1),

ms
0 = mn

0 if θ = 1,

ms
0 < mn

0 if θ ∈ (1,∞).

In words: Sophisticated agents save less at young age than naive agents for θ < 1

(high IES) whereas the converse statement is true for θ > 1 (low IES). In terms of the

terminology introduced in Section 4.3.3 this finding means that the inter-temporal

smoothing motive dominates the constrain ones future self motive for θ > 1 (low IES)
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and vice versa for θ < 1 (high IES).

From Proposition 7 we immediately get the following corollary on undersaving of

naive and sophisticated RDU agents:

Corollary 5 By Proposition 7,

1. for θ < 1 (high IES) undersaving of the naive RDU agent implies undersaving

of the sophisticated RDU agent and

2. for θ > 1 (low IES) undersaving of the sophisticated RDU agent implies under-

saving of the naive RDU agent.

5.3.3 Sophisticated Agent

In terms of threshold levels of the optimism parameter, Corollary 5 has the following

implication for undersaving of the sophisticated agent:

Corollary 6 By Corollary 5,

1. for θ < 1 (high IES) λ < λn is a sufficient condition and

2. for θ > 1 (low IES) λ < λn is a necessary condition

for undersaving of the sophisticated agent.

This characterization is not very sharp. We therefore now turn to proving exis-

tence of the threshold level λs such that for all λ < λs there is undersaving of the

sophisticated agent. From Corollary 2 we know that naive and sophisticated agents

behave identically for θ = 1 so that λs = λn when θ = 1. To characterize λs for θ 6= 1

it is sufficient to show that the LHS of (59) is strictly increasing in the optimism

parameter λ. Analytically, we could only show this for the case θ > 1 but not for

θ < 1. Hence, we treat both cases separately.

Low IES (θ > 1). We first prove existence of a λs for θ > 1 so that for all λ < λs

there is undersaving of the sophisticated agent:
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Proposition 8 Let θ > 1. Then the sophisticated RDU agent undersaves at a young

age if, and only if, λ < λs, whereby λs satisfies

(
1 +

(
β
(
δλs + (1− δ)ψ

1,2

)) 1
θ

)1− 1
θ

(65)

·
((

δλs + (1− δ)ψ
0,1

)
+ β

(
δλs + (1− δ)ψ

0,2

)(
β
(
δλs + (1− δ)ψ

1,2

)) 1
θ
−1
) 1

θ

= ψ
1
θ
0,1 + (βψ0,2)

1
θ .

From Propositions 7 and 8 we therefore have (in analogy to Corollary 5):

Corollary 7 For θ > 1, we have

λs ≤ λn. (66)

Hence, for θ > 1, underestimation of survival beliefs must be stronger for sophis-

ticated agents than for naive agents to generate undersaving.

Low IES (θ < 1). Our formal proof of Proposition 8 (relegated to the Appendix)

shows that
(
ν0,1 + ν0,2

ν1,2
(βν1,2)

1
θ

) 1
θ

is strictly increasing in λ for all values of θ whereas(
1+(βν1,2)

1
θ

)
(

1+(βν1,2)
1
θ

) 1
θ

is increasing in λ if, and only if, θ ≥ 1. Consequently, we cannot

unambiguously determine the overall effect of an increase in λ on the LHS of (59) for

the case of θ < 1 (high IES). We therefore address the case θ < 1 numerically (with

details relegated to the Appendix), establishing the following conjecture:

Conjecture 1 For θ < 1 (high IES) we have

1. that the sophisticated RDU agent undersaves at a young age if, and only if,

λ < λs with λs implicitly given by (65) and

2. that underestimation of young-age survival chances, λ < ψ0,1, is a necessary

condition for young-age undersaving.

We can therefore summarize our discussion on undersaving as follows: independent

of the specific value of θ > 0, underestimation must be sufficiently strong to generate

undersaving for both the naive and the sophisticated RDU agent.
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5.3.4 The Special Case of Logarithmic Utility

For general values of θ 6= 1 we cannot derive an analytical characterization of under-

saving at a young age that goes beyond the implicit characterizations in Propositions 6

and 8. For the special case of a logarithmic period utility function, i.e., θ = 1, how-

ever, we can present a simple analytical characterization of undersaving at a young

age that applies to both types of agents because of Corollary 2:

Proposition 9 Let θ = 1. Then the RDU decision maker undersaves at a young age

if, and only if, λ falls into the interval

[0, λ∗) ⊂
[
0, ψ0,1

]
(67)

where

λs = λn = λ∗ =
1 + βψ1,2

1 + β
· ψ0,1. (68)

The inequalities
1 + βψ1,2

1 + β
< 1 ⇒ λ∗ < ψ0,1

establish in closed form our earlier general insights for the naive agent according to

which (i) underestimation of survival chances has to be sufficiently strong and (ii)

such underestimation has to be stronger when the discount factor increases.

Remark 9 Note that the likelihood-insensitivity parameter δ does not appear in (68)

so that its specific value (besides being non-zero) has no impact on the undersaving

threshold value λ∗. That is, for a logarithmic utility function only the optimism but

not the likelihood-insensitivity parameter δ determines whether the RDU agent will

undersave at a young age or not. An inspection of the inequalities in Proposition 6

shows that the situation will be different for non-logarithmic utility functions where

the specific value of δ will impact on the question whether there is undersaving or not

for fixed values of λ. Moreover, this impact will differ between naive and sophisticated

agents. While an analytical investigation of the role of δ for undersaving with non-

logarithmic utility functions turns out to be non-tractable, we will address this role in

our numerical analysis of Section 6.
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5.4 Empirically Relevant Survival Belief Biases

In line with the HRS data, cf. Section 2, we now restrict attention to the em-

pirically relevant case of biases in survival beliefs in which agents underestimate

their survival chances at young but overestimate them at old ages, i.e., we assume

that λ ∈
(
ψ1,2, ψ0,1

)
. To obtain a closed form solution for the co-occurrence of

undersaving at young and oversaving at old ages, we again restrict attention to a

logarithmic utility function so that our results in this section apply to both naive and

sophisticated RDU agents (cf. Corollary 2).

While Proposition 9 establishes that λ < λ? is required to generate undersaving,

λ > ψ1,2 is, by Proposition 5, required to generate oversaving. Combining both

propositions thus implies undersaving at young and oversaving at old ages co-occur if,

and only if, λ ∈ (ψ1,2, λ
?) with λ? given by (68). For large values of ψ1,2, however, this

interval might be empty. The following proposition provides a clear characterization.

Proposition 10 Let θ = 1 and consider a RDU decision maker who underestimates

her survival chances at a young and overestimates them at an old age, i.e., λ ∈(
ψ1

1,2, ψ
0
0,1

)
. The decision maker undersaves at a young and oversaves at an old age

if, and only if, we have for the optimism parameter

λ ∈
(
ψ1,2,

1 + βψ1,2

1 + β
· ψ0,1

)
. (69)

The interval is empty if
ψ0,1

1+β(1−ψ0,1)
< ψ1,2 < ψ0,1 < 1.

Our RDU life-cycle model with neo-additively transformed survival probabilities

can thus indeed generate undersaving at young combined with oversaving at old ages

for decision makers who underestimate their survival chances at young and overes-

timate them at old ages. In this specific sense our model establishes the possibility

that the observed savings puzzles can be explained through the age-dependent biases

in survival beliefs as reported in the HRS data.

6 Numerical Illustrations

Although our analytical approach yields very useful insights, there are (at least) two

main limitations even for the three-period variant of the RDU life-cycle model. First,

35



it is impossible to establish closed form conditions for which oversaving dominates

undersaving over the life-cycle. Under such conditions old-age asset holdings in the

RDU model would exceed those of the RE model thereby addressing the additional

stylized fact of too high old-age asset holdings. Second, while Proposition 7 establishes

qualitative differences in the savings behavior of naive versus sophisticated agents, it

would be interesting to see how the magnitude of these differences varies with the

likelihood-insensitivity parameter δ. We would also like to see how these parameters

impact on the threshold levels λn and λs that determine young-age undersaving for

the naive agent and her sophisticated counterpart, respectively.

6.1 High Old-Age Asset Holdings

We say that the three-period RDU model generates high old-age asset holdings if,

and only if, the period 2 asset holdings (i.e., the period 2 consumption) is higher for

the RDU than for the RE agent. More precisely, our model generates high old-age

asset holdings for the naive RDU agent if, and only if (for νij = δλ+ (1− δ)ψij),

(1−mn
0 ) · (1−mn

1 ) ≥ (1−mr
0) · (1−mr

1)

⇔ (βν0,1)
1
θ + (β2ν0,2)

1
θ

1 + (βν0,1)
1
θ + (β2ν0,2)

1
θ

(βν1,2)
1
θ

1 + (βν1,2)
1
θ

≥
(βψ0,1)

1
θ + (β2ψ0,2)

1
θ

1 + (βψ0,1)
1
θ + (β2ψ0,2)

1
θ

(
βψ1,2

) 1
θ

1 +
(
βψ1,2

) 1
θ

.

(70)

Our objective is to choose a parametrization that generates high old-age asset

holdings. To this purpose we set θ = 1 (so that our findings equally apply to naive

and sophisticated RDU agents), ψ0,1 = 0.99, ψ1,2 = 0.5 and consider β ∈ (0, 1]. For

this parametrization of the model we first compute λ to characterize the interval (69).

Recall that this is independent of δ.21 This upper threshold of the interval (69) is

characterized by the red solid curves in Figure 2. The lower threshold is ψ1,2 = 0.5.

Hence, for any λ above 0.5 and below the red solid curves of Figure 2, undersaving

at young and oversaving at old age co-occur.

Next, we additionally consider δ ∈ (0, 1] and compute for all parameter constella-

tions λ such that condition (70) holds. This is illustrated by the surface in Figure 2

with the interpretation that for all λ above that surface asset holdings of the RDU

21For our choice of parameters, this interval is never empty. We could achieve emptiness for some
low values of β if we were to decrease ψ0,1 towards ψ1,2, cf. equation (69).
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Figure 2: Threshold Values of λ for RDU Agents
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Notes: Notes: Threshold values for λ to illustrate the regions of undersaving, oversaving and high
old-age asset holdings, see the main text, for θ = 1, ψ0,1 = 0.99, ψ1,2 = 0.5.

agent exceed those of the RE agent. Observe that this is of course stricter than the

requirement of oversaving.

To summarize, this figure is a useful illustration of four cases:

1. For λ < ψ1,2 = 0.5 there is undersaving but no oversaving.

2. For λ > ψ1,2 but less than the surface of Figure 2 there is undersaving and

oversaving but period 2 asset holdings of the RE agent still exceed those of

the RDU agent. Hence, overestimation of old-age survival beliefs (and thereby

oversaving) is not strong enough.

3. For λ above the surface but below the red lines, all three phenomena (under-

saving, oversaving and high old-age asset holdings) occur jointly.

4. For λ above the red lines, there is oversaving and high old-age asset holdings but

overestimation of old-age survival beliefs (and thereby oversaving) is so strong

that there no longer undersaving.
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In light of the empirical and quantitative literature on savings puzzles over the

life-cycle summarized in Section 1, the third case is the most interesting parameter

constellation because it simultaneously generates all three saving puzzles, undersav-

ing, oversaving and high old-age asset holdings, as a result of under- and overestima-

tion of survival beliefs. However, these results also illustrate—thereby summarizing

our main findings—that it is not an obvious conclusion that such biases in survival

beliefs lead to a resolution of all savings puzzles.

6.2 Differences between Naive and Sophisticated Agents

We now illustrate the differences in the MPCs of the naive agent and her sophisti-

cated counterpart as well as the differences in their respective threshold levels of the

optimism parameter that induce young-age undersaving.

6.2.1 Differences in MPCs

Let us first look at the magnitude of the difference between the savings behavior of the

sophisticated versus the naive RDU agent. To this purpose, we now set β = 0.9930 ≈
0.75, ψ0,1 = 0.99, ψ1,2 = 0.5, λ = 0.7. We additionally vary θ ∈ {0.01, . . . , 1, . . . , 5}
and the likelihood insensitivity parameter by considering δ ∈ {0.01, . . . , 1}. Results

are shown in Figure 3. Recall from Proposition 7 that for θ = 1 the MPCs of both

types of agents coincide whereas the sophisticated agent consumes more, respectively

less, than the naive agent for θ < 1, respectively θ > 1. As the figure shows, the

magnitude of this difference in MPCs increases in likelihood-insensitivity, δ. For

values of δ close to one, these differences are no longer negligible if the agents’ per

period utility features a high IES. For a low IES, differences continue to be moderate

even with strong likelihood insensitivity.22

6.2.2 Differences in Optimism Parameter Thresholds

Turn now to the thresholds levels λn and λs as pinned down through the equations

(60) and (65), respectively. By definition, the naive agent undersaves iff λ < λn

whereas the sophisticated agent undersaves iff λ < λs. The ratio λs

λn
thus measures the

difference in underestimation of survival chances between both types of agents which

22It is therefore not surprising that some authors observe small differences between naive and
sophisticated agents, cf., e.g., Angeletos et al. (2001, p. 52) who choose an IES of 0.5.
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Figure 3: Ratio of Marginal Propensities to Consume, ms
0/m
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Notes: Ratio of marginal propensities to consume between the sophisticated and the naive RDU
agent in period 0, ms

0/m
n
0 , for β = 0.9930, ψ0,1 = 0.99, ψ1,2 = 0.5, λ = 0.7.

is (just) required to generate undersaving for the respective type. To characterize this

ratio we consider the same parametrization as in the previous exercise of Figure 3.

Results are shown in Figure 4. To interpret those, first recall from Proposition (10),

that for θ = 1

λn = λs = λ∗ =
1 + βψ1,2

1 + β
· ψ0,1 ' 0.0778.

and from Corollary 7 that λn < λs for θ < 1 and λn > λs for θ > 1. Turning to the

results in the figure, notice that as with the ratio of the MPCs shown in Figure 3,

the ratio λs

λn
increases in the value of the likelihood-insensitivity parameter δ. Again,

for δ close to one, these differences are no longer negligible for a high IES.

7 Concluding Remarks

Our main research question in this paper is to investigate whether the RDU model

can give rise to important savings puzzles discussed in the life-cycle literature, namely

that it generates too little saving relative to the RE benchmark model when house-
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Figure 4: Ratio of the Optimism Parameter Thresholds, λs/λn
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Notes: Ratio of the optimism parameter thresholds between the sophisticated and the naive RDU
agent, λs/λn, for β = 0.9930, ψ0,1 = 0.99, ψ1,2 = 0.5.

holds are young and too much saving (or even too high old-age asset holdings) when

households are old. As our main answer to this question we establish that only a

subset of parameter constellations can give rise to the joint occurrence of oversaving

and undersaving; in particular, the familiar quasi-hyperbolic time discounting (QHD)

model—which is nested as a special case—cannot generate oversaving.

The basic intuition for our main finding is as follows: whenever households over-

estimate their survival chances when old, then they will oversave; if households also

underestimate their survival chances when young, then they will have a tendency

to undersave; however, for undersaving to indeed occur, this underestimation must

be sufficiently strong in order to dominate the overestimation of survival to old age.

These results refer to the flow of savings. We further establish (numerically) that

to also generate high old-age asset holdings, overestimation has to be sufficiently

strong. Our analysis therefore shows that underestimation of survival chances when

young combined with overestimation when old are in no way sufficient conditions for

generating the well-known savings puzzles.
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The reason why our RDU model can lead to oversaving whereas the QHD model

cannot is an additional degree of freedom in the parametrization. The QHD model

only features a short term discount factor, giving rise to stronger impatience and

therefore to undersaving relative to the RE benchmark. Our model features an op-

timism and a likelihood-insensitivity parameter for the description of subjective sur-

vival beliefs. This additional degree of freedom implies that one has to profoundly

discipline the calibration. We adopt such a disciplined approach in our quantitative

work (Groneck, Ludwig, and Zimper 2016) which is based on a model of Bayesian

learning of neo-additive survival beliefs. There we estimate the two parameters—

the optimism and the likelihood insensitivity parameter—outside the life-cycle model

by using data on subjective survival beliefs from the Health and Retirement Study

(HRS). The only parameter we identify by use of the structural model is the house-

holds’ discount factor which we pin down by matching average asset holdings but not

their shape. Our finding there is that this calibration goes a long way in explaining

the observed savings puzzles: the quantitative model generates undersaving, oversav-

ing and high old-age asset holdings and matches the average life-cycle asset profile

in the data remarkably well. Our main point here is to show that these quantitative

findings are in no way obvious, although intuition may suggest so at first glance.

Although our structural behavioral economics approach bridges the empirical lit-

erature on subjective survival beliefs and the decision theoretic literature on RDU in

order to provide a clean characterization of conditions leading to oversaving and un-

dersaving in a RDU life-cycle model, several aspects remain unaddressed. This gives

rise to a number of research avenues out of which we find two particularly interesting.

First, our RDU life-cycle model only considers survival risks but neither health risks

nor does it feature a bequest motive. Both have been identified in the RE literature as

crucial elements to generate high old-age asset holdings, cf. De Nardi, French, Jones,

DeNardi, and Nardi (2010, 2016) and Lockwood (2012). Our results suggest that the

estimates in these papers of bequest motives and of precautionary savings motives

in light of health risks are upward biased because the underlying RE models do not

feature overestimation of old-age objective survival risks. It is certainly a challeng-

ing endeavor—especially with respect to the identification of all the relevant model

parameters and the modeling of subjective health risk—to extend our present theo-

retical analysis and our quantitative work in Groneck, Ludwig, and Zimper (2016) by

these features. With respect to a bequest motive our results suggest that identifica-
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tion of preference parameters for such a motive must come from consumption rather

than asset data. The reason is that overestimation of survival probabilities as well

as a bequest motive lead to slow old-age asset decumulation. In the first case, assets

are used to finance own consumption, in the second case they are used to finance

the consumption of ones offspring. Second, we investigate in an ongoing empirical

project (Grevenbrock et al. 2016) whether our cognitive and psychological interpre-

tation (i.e., likelihood insensitivity and optimism) of biases of survival probabilities

is valid by exploring newly available direct cognitive and psychological measures in

the HRS. In this work, we identify age-specific inverse S-shaped survival probability

weighting functions that can reasonably well be approximated by linear neo-additive

probability weighting functions as in the present paper. Our results in this ongoing

empirical project show that the shapes of these functions are influenced by the direct

cognitive and psychological measures, which is consistent with our theory.
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A Formal Proofs

Proof of Theorem 2. For all agents the objective is concave and the constraint

is linear so that the programming problem is convex. Hence, first-order conditions

together with the transversality condition are necessary and sufficient. Our proof is by

backward induction iterating on the first-order conditions. We simplify notation and

generally write mi,h
t , c

i,h
t for all i ∈ {r, s, n}, whereby mi,h

t = mi
t, c

i,h
t = cit for i ∈ {r, s}.

The claim is that ci,ht = mi,h
t wt for all i, t. The base case is that mi,h

T = 1 for all i which

is implied by the no-Ponzi and transversality condition. Both conditions, together

with the lower Inada condition limc→0 uc = ∞ also imply that mi,h
t ∈ (0, 1) for

all i, t < T . The remainder of the proof shows the induction steps for the three agent

types.

1. RE: from the first-order condition (76) we have

uc(c
r
t ) = βψt,t+1Ruc(c

r
t+1)

⇔ cr
−θ

t = βψt,t+1R
(
mr
t+1 (wt − crt )R

)−θ
from which (26) immediately follows.

2. Naive RDU: from the first-order condition (77) we get

uc(c
n,h
t ) = β

νh,t+1

νh,t
Ruc(c

n,h
t+1)

⇔ cn,h
−θ

t = β
νh,t+1

νhh,t
R
(
mn,h
t+1

(
wt − cn,ht

)
R
)−θ

from which (27) immediately follows.

3. Sophisticated RDU: Start from equation (78), cf. the Proof of Proposition 11

in Appendix B.1.

(a) First, derive the closed form solution for the derivative of the value func-

tion: From the proof of Proposition 11 we have that under the induction

claim the derivative of the value function for any period t, h ≤ t < T , cf.

equation (82), writes as

∂V h
t (·)
∂wt

= cst
−θms

t + β
νh,t+1

νh,t
R (1−ms

t)
∂V h

t+1(·)
∂wt+1

(71)
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We now derive an expression for the derivative of the value function in

terms of period t wealth, again by backward induction.

i. Claim: In any period t ≤ T the derivative of the value function writes

as
∂V h

t (·)
∂wt

= ζhtw
−θ
t (72)

for some ζht > 0.

ii. Base case: In period T we have V h
T = 1

1−θc
s
T

1−θ = 1
1−θw

1−θ
T so that

∂V hT (·)
∂wT

=

w−θT and ζhT = 1.

iii. Induction step: Use (72) in (71) to get

∂V h
t (·)
∂wt

= cst
−θms

t + β
νh,t+1

νh,t
R (1−ms

t) ζ
h
t+1w

−θ
t+1.

Using cst = ms
twt and wt+1 = (wt − cst)R = (1−ms

t)wtR in the above

we get

∂V h
t (·)
∂wt

=

(
ms1−θ

t + β
νh,t+1

νh,t
R1−θ (1−ms

t)
1−θ ζht+1

)
w−θt = ζhtw

−θ
t

so that we can generally write

ζht =

1 for t = T

ms1−θ
t + β

νh,t+1

νh,t
R1−θ (1−ms

t)
1−θ ζht+1 otherwise.

(b) Next, use (72) to rewrite the distance of derivatives of value functions

showing up in term Ξh+1 in equation (78) as

∆V h,h+1
h+2 =

∂V h
h+2(·)

∂wh+2

−
∂V h+1

h+2 (·)
∂wh+2

=
(
ζhh+2 − ζh+1

h+2

)
w−θh+2.
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Use the above to rewrite Ξh+1 to get

Ξh+1 = β
νh,h+2

νh,h+1

R
(
1−ms

h+1

)( ∂V h
h+2

∂wh+2

−
∂V h+1

h+2

∂wh+2

)
= β

νh,h+2

νh,h+1

R
(
1−ms

h+1

) (
ζhh+2 − ζh+1

h+2

) (
(1−ms

h+1)wh+1R
)−θ

= βR1−θ νh,h+2

νh,h+1

(
1−ms

h+1

)1−θ
msθ

h+1

(
ζhh+2 − ζh+1

h+2

)
ms−θ

h+1w
−θ
h+1

= ξh+1m
s−θ

h+1w
−θ
h+1.

which proves equation (30).

(c) Induction step: Use the above in the first-order condition (78), cf. Propo-

sition 11 in Appendix B.1, to get

cs
−θ

h = βRνh,h+1

(
Θh+1c

s−θ

h+1 + ξh+1m
s−θ

h+1w
−θ
h+1

)
⇔ csh =

1

1 +
(βR1−θνh,h+1(Θh+1+ξh+1))

1
θ

msh+1

wh.

which proves equation (28).

(d) Finally, to see that ζhh+2−ζh+1
h+2 ≥ 0 for all h ≤ T−2, first, notice that ζhT = 1

for all h so that the distance is zero for h = T −2. Next, observe from (31)

that for any t such that h+ 2 ≤ t < T the difference can be rewritten as

ζht − ζh+1
t = βR1−θ (1−ms

t)
1−θ
(
νh,t+1

νh,t
ζht+1 −

νh+1,t+1

νh+1,t

ζh+1
t+1

)
≥ 0

⇔ νh,t+1

νh,t
ζht+1 ≥

νh+1,t+1

νh+1,t

ζh+1
t+1

for which a sufficient condition is

νh,t+1

νh,t
≥ νh+1,t+1

νh+1,t

∧ ζht+1 ≥ ζh+1
t+1 .

For the second part of this sufficient condition, we accordingly require that

νh,t+2

νh,t+1

ζht+2 ≥
νh+1,t+2

νh+1,t+1

ζh+1
t+2
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for which a sufficient condition is

νh,t+2

νh,t+1

≥ νh+1,t+2

νh+1,t+1

∧ ζht+2 ≥ ζh+1
t+2 .

Since ζhT = ζh+1
T = 1 we therefore have as sufficient condition for ζht ≥ ζht+1

for any t such that h+ 2 ≤ t < T that

νh,j
νh,j−1

≥ νh+1,j

νh+1,j−1

, for all j = t+ 1, . . . , T.

Now, look at any j ∈ {t+ 1, . . . , T}. We have

νh,j
νh,j−1

≥ νh+1,j

νh+1,j−1

⇔
δλ+ (1− δ)ψh,j
δλ+ (1− δ)ψh,j−1

≥
δλ+ (1− δ)ψh+1,j

δλ+ (1− δ)ψh+1,j−1

⇔
δλ+ (1− δ)ψh,h+1ψh+1,j

δλ+ (1− δ)ψh,h+1ψh+1,j−1

≥
δλ+ (1− δ)ψh+1,j

δλ+ (1− δ)ψh+1,j−1

and the last inequality is strict for δ ∈ (0, 1), λ ∈ (0, 1) because ψh,h+1 ∈
(0, 1) so that the LHS of the above expression is closer to one than the

RHS. Hence, for δ ∈ (0, 1), λ ∈ (0, 1) we have ζht − ζh+1
t > 0 for any t such

that h+ 2 ≤ t < T .

Also notice that the above weak inequality holds with equality for (i)

δ = 0 (RE model), (ii) δ ∈ (0, 1), λ = 0 (QHD model, cf. Section 3.2) and

for δ = 1, λ ∈ (0, 1) (QHD model w/o mortality risk, cf. Section 3.2) so

that in these cases ζht = ζh+1
t for any t such that h+ 2 ≤ t < T .

�

Proof of Proposition 1. The proof proceeds in three steps. First, we establish a

necessary condition for mn,h
h+1 ≤ mn,h+1

h+1 . Next, we establish a sufficient condition for

the necessary condition to hold. Finally we show that this sufficient condition always

holds in our model.

1. According to equation (27) the decision in period h for the MPC in period h+1
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by the naive agent is

mn,h
h+1 =

1

1 +

(
β
νh,h+2
νh,h+1

R1−θ
)

mn,hh+2

=
1∑T−1

t=h (βR1−θ)t−h
νh,t+1

νh,h+1

,

where the second term follows from backward substitution. However, when the

agent turns h+ 1 his MPC is

mn,h+1
h+1 =

1

1 +
(βνh+1,h+2R1−θ)

mn,h+1
h+2

=
1∑T−1

t=h (βR1−θ)t−h νh+1,t+1

.

From this we observe that the naive RDU agent consumes more in period h+ 1

than planned in period h, i.e.,

cnh+1 = cn,h+1
h+1 ≥ cn,hh+1

if and only if

T−1∑
t=h+1

(
βR1−θ)t−h (νh,t+1 − νh,h+1νh+1,t+1) ≥ 0. (73)

A sufficient condition for (73) is obviously that condition (35) holds, i.e.,

νh,t+1 ≥ νh,h+1νh+1,t+1 for all t = h+ 1, . . . , T − 1.

2. We now show that our maintained assumption of decreasing survival chances
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implies condition (35). To see this, notice that

νh,t+1 ≥ νh,h+1νh+1,t+1

⇔ νh,t+1

νh+1,t+1

≥ νh,h+1

⇔
δλ+ (1− δ)ψh,t+1

δλ+ (1− δ)ψh+1,t+1

≥ δλ+ (1− δ)ψh,h+1

⇔
δλ+ (1− δ)ψh,h+1ψh+1,t+1

δλ+ (1− δ)ψh+1,t+1

≥ δλ+ (1− δ)ψh,h+1

⇔
δλ+ (1− δ)ψh,h+1ψh+1,t+1

δλ+ (1− δ)ψh+1,t+1

≥
δλ+ (1− δ)ψh,h+1ψh+1,h+2

δλ+ (1− δ)ψh+1,h+2

≥ δλ+ (1− δ)ψh,h+1,

where the last line follows because ψh+1,h+2 ≥ ψh+1,t+1 for ages t > h and

because ψh,h+1 < 1. The inequality is generally weak. It holds with equality

for δ = 0 (RE agent) and with strict inequality for δ ∈ (0, 1), λ ∈ [0, 1] (hence

also for the QHD model, cf. Section 3.2) and for δ = 1, λ ∈ (0, 1) (QHD model

w/o mortality risk, cf. Section 3.2).

3. Finally, we establish that the sufficient condition (35) always holds in our model.

To see this define the distance function

D(λ) ≡ νh,h+2 − νh,h+1νh+1,h+2

We next show that D(λ = 0) > 0 and D(λ = 1) > 0 whereby the relative

magnitudes depend on the exact parametrization of survival risk. We then show

that D(λ) is an inverse-u shaped so that D(λ) = 0 is not possible for λ ∈ (0, 1).

Observe that D(λ) writes as

D(λ) = δλ+ (1− δ)ψh,h+2 −
(
δλ+ (1− δ)ψh,h+1

) (
δλ+ (1− δ)ψh+1,h+2

)
= δλ+ (1− δ)ψh,h+2 −

(
(δλ)2 + δ(1− δ)λ(ψh,h+1 + ψh+1,h+2) + (1− δ)2ψh,h+2

)
.

Next, evaluate D(λ) at λ = 0 to get

D(λ = 0) = δ(1− δ)ψh,h+2 > 0,
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and at λ = 1:

D(λ = 1) = δ + (1− δ)ψh,h+2 −
(
δ2 + δ(1− δ)

(
ψh,h+1 + ψh+1,h+2

)
+ (1− δ)2ψh,h+2

)
= δ(1− δ) + δ(1− δ)ψh,h+2 − δ(1− δ)

(
ψh,h+1 + ψh+1,h+2

)
= δ(1− δ)

(
1− ψh,h+1

)
> 0.

Also notice that

Dλ = δ − 2δ2λ− δ(1− δ)
(
ψh,h+1 + ψh,h+2

)
= δ

(
1− 2δλ− (1− δ)

(
ψh,h+1 + ψh,h+2

))
so that

Dλ > 0 ⇔ λ <
1− (1− δ)

(
ψh,h+1 + ψh,h+2

)
2δ

.

Furthermore, observe that

Dλλ = −2δ2 < 0.

Hence, D(λ) 6= 0 for δ > 0, λ ∈ [0, 1].

�

Proof of Theorem 3. We again simplify notation and generally write mi,h
t , c

i,h
t for

all i ∈ {r, s, n}, whereby mi,h
t = mi

t, c
i,h
t = cit for i ∈ {r, s}. The utility function in

period h writes as

Uh = u(ci,hh ) +
T∑

t=h+1

ρi(h, t)u(ci,ht ). (74)

The consumption policy in all future periods t > h is given by

ci,ht = mi,h
t wt

where

wt =
(
wt−1 − ci,ht−1

)
R =

(
wh − ci,hh

)
Rt−h

t−1∏
j=h+1

(1−mi,h
j ),
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where
∏h

j=h+1(1−mi,h
j ) = 1. Using this in (74) we get

Uh = u(ch) +
T∑

t=h+1

ρi(h, t)u

(
mi,h
t

(
wh − ci,hh

)
Rt−h

t−1∏
j=h+1

(1−mi,h
j )

)
.

Assuming CRRA the above rewrites as

Uh =
1

1− θ

ci,h1−θh +
(
wh − ci,hh

)1−θ T∑
t=h+1

ρi(h, t)

(
Rt−hmi,h

t

t−1∏
j=h+1

(1−mi,h
j )

)1−θ


Taking first-order conditions we get

ci,h
−θ

h =
(
wh − ci,hh

)−θ T∑
t=h+1

ρi(h, t)

(
Rt−hmi,h

t

t−1∏
j=h+1

(1−mi,h
j )

)1−θ

,

hence

ci,hh =
1

1 +

(∑T
t=h+1 ρ

i(h, t)
(
Rt−hmi,h

t

∏t−1
j=h+1

(
1−mi,h

j

))1−θ
) 1

θ

wh.

�

Proof of Proposition 8. Step 1. Obviously, ν0,1 and (βν1,2)
1
θ are strictly increas-

ing in λ for all θ. To prove that the LHS of (59) is strictly increasing in λ for θ ≥ 1

it therefore suffices to show that (
1 + (βν1,2)

1
θ

)
(

1 + (βν1,2)
1
θ

) 1
θ

(75)

as well as ν0,2
ν1,2

are increasing in λ for θ ≥ 1.
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Step 2. To see that (75) is increasing in λ for θ ≥ 1, observe that

d

dx

(
1 + x

1
θ

)
(

1 + x
1
θ

) 1
θ

≥ 0

⇔
1

θ
x

1
θ
−1
(

1 + x
1
θ

) 1
θ ≥ 1

θ

(
1 + x

1
θ

) 1
θ
−1 1

θ
x

1
θ
−1
(

1 + x
1
θ

)
⇔

1 ≥ 1

θ
,

which gives the desired result.

Step 3. To see that ν0,2
ν1,2

is increasing in λ, observe that

d

dλ

ν0,2

ν1,2

≥ 0

⇔

δ
(
δλ+ (1− δ)ψ

1,2

)
≥ δ

(
δλ+ (1− δ)ψ

0,1
ψ

1,2

)
⇔

1 ≥ ψ
0,1

,

which is satisfied for all θ.�

Numerical Analysis of Conjecture 1.

1. To numerically establish the first part of the conjecture, we first compute λs

from equation (65) for a multidimensional grid of parameter values for G = θ ∈
(0, 1)⊗ψ0,1 ∈ (0, 1)⊗ψ1,2 ∈ (0, 1) < ψ0,1⊗β ∈ (0, 1)⊗δ ∈ (0, 1). Next, for each

point on this multidimensional grid and the corresponding root λ?s(θ, ψ0,1, ψ1,2, β, δ)

we compute on a grid of λ ∈ (0, λ?s(·)) the LHS of (59). There is no λ on this

grid for which the MPC of the sophisticated RDU agent is lower than the MPC

of the RE agent.

2. In terms of underestimation, recall from Corollary 6 that λ < λn is only a suffi-

cient condition for undersaving of the sophisticated agent. There may therefore

be a parameter constellation such that λs > ψ0,1. In our numerical analysis lead-

ing to Conjecture 1 we could, however, not find any parameter combinations
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such that λs > ψ0,1.

Proof of Proposition 9. From (57) we need

ν0,1 + βν0,2 < ψ0,1 + βψ0,2

⇔ δλ+ (1− δ)ψ0,1 + β
(
δλ+ (1− δ)ψ0,2

)
< ψ0,1 + βψ0,2

⇔ λ <
ψ0,1 + βψ0,2

1 + β

from which (68) immediately follows. �
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