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Non-Technical Summary

The notion of an economy as a network of more or less tightly linked units has received
considerable attention in the finance and economics literature. Links in a network usually have a
direction, i.e., it makes a difference whether a link goes from node i to node j or the other way
around. In this paper, we study whether directedness in a network at the cash flow level has
implications for asset prices. To this end, we introduce a general equilibrium asset pricing model,
in which negative cash flow shocks in some industries can increase the probability of subsequent
cash flow shocks in other industries.

We introduce the variable "shock propagation capacity” (spc) to measure directedness. Industries
with a high spc are by definition those industries whose shocks substantially increase the risk of
subsequent shocks throughout the economy. Based on a series expansion of the closed-form
solution of our model, we analyze the impact of spc on the main equilibrium asset pricing
guantities. Specifically, we prove the following two cross-sectional statements: (i) Cash flow
shocks in industries with high spc command a high market price of risk. (ii) The response of an
industry's price to its own cash flow shocks is less pronounced for industries with higher spc.
Importantly, however, when it comes to expected excess returns, these two effects work in
opposite directions, so that the overall impact of spc on risk premia depends on the tradeoff
between them. To illustrate our theoretical findings, we estimate an empirical network from
industry cash flows and find support for these predictions.

The innovative combination of self and mutually exciting jump processes with recursive
preferences allows for the integration of directed networks into a tractable equilibrium asset pricing
model. Cash flow shocks propagate with a time lag, but, of course, equilibrium prices react
immediately to any shock in the economy since markets are efficient. It is this instantaneous
reaction of prices to cash flow shocks propagating slowly over time that is at the heart of our
equilibrium model. Our results indicate that it is necessary to decompose expected returns into
their constituents in order to understand the implications of directed cash flow shock propagation.
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ABSTRACT

Directed links in cash flow networks affect the cross-section of price exposures and
market prices of risk in equilibrium. In an asset pricing model featuring mutually
exciting jumps, we measure directedness through an asset’s shock propagation
capacity (spc). In the model, we prove: (i) Cash flow shocks of high spc assets
command high market prices of risk, (ii) the price reaction of an asset to its own
cash flow shocks is less pronounced for high spc assets. Our results indicate it is
necessary to decompose excess returns into their constituents to understand the
implications of directed cash flow shock propagation.
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The notion of an economy as a network of more or less tightly linked units has received
considerable attention in the finance and economics literature. Links in a network usually
have a direction, i.e., it makes a difference whether a link goes from node ¢ to node j
or the other way around. In this paper, we document that directedness in a network at
the cash flow level is of first-order importance for asset prices. We propose an equilibrium
asset pricing model, in which negative cash flow shocks in some industries can increase
the probability of subsequent cash flow shocks in other industries.! The direction and the
magnitude of this “timing of shocks” characterize the network in our model and we introduce
the variable “shock propagation capacity” (spc) that measures this directedness. Industries
with a high spc are by definition those industries whose shocks substantially increase the risk
of subsequent shocks throughout the economy. Based on a series expansion of the closed-form
solution of our model, we analyze the impact of spc on the main equilibrium asset pricing
quantities. Specifically, we prove the following two cross-sectional statements: (i) Cash flow
shocks in industries with high spc command a high market price of risk. (ii) The response of
an industry’s price to its own cash flow shocks is less pronounced for industries with higher
spc. Finally, when it comes to expected excess returns, these two effects work in opposite
directions, so that the overall impact of spc on risk premia depends on the tradeoff between
them.

The intuition behind statement (i) is as follows. High spc industries have more links
or stronger links to other industries, relative to their low spc counterparts. Hence, shocks
originating from a high spc industry have a more pronounced impact on the rest of the
economy. They increase the aggregate risk of subsequent shocks by a larger amount, hence

they are more systematic and carry a higher market price of risk.

Statement (ii) builds on the general intuition that price-to-cash flow ratios throughout
the economy decrease in response to any cash flow shock that increases the aggregate risk.
However, we document that industry ¢’s price reaction to a shock to industry j’s cash flow is
the result of a tradeoff between two opposing forces: (1) the direct spillover of shocks from
7 to i causes a price decline reflecting that the risk of subsequent shocks in industry i’s cash
flows increased after the initial shock to industry 7, and (2) an equilibrium hedge effect.
The more shocks to industry j spill over to other industries k # ¢, the more “attractive”
(in relative terms) will be industry i after the initial shock to j. This latter effect is always
positive, irrespective of the representative investor’s preference parameters, and becomes
more pronounced, the larger the spc of asset j. In particular, if a shock to a high spc

industry increases the probability of subsequent shocks only in other, low spc industries,

"'We will use the term “industry” to refer to a node in the network throughout the paper. Of course,
nodes can also represent individual firms, countries, or any other economic unit.



the equity of the “originating” industry itself serves as a hedging device against the risk of
further propagation of cash flow shocks throughout the economy. The positive price-to-cash
flow ratio reaction due to the hedge effect (2) dampens the price decline due to the direct
effect (1). In particular when it comes to shocks in their own cash flows, high spc industries

thus have a less negative price reaction than their low spc counterparts.

Our stylized consumption-based equilibrium asset pricing model features an arbitrary
number of industries whose cash flows are linked via self and mutually exciting jump pro-
cesses, and a representative investor with recursive preferences. An initial negative cash flow
shock of industry ¢ increases the probability of future cash flow shocks to connected industries
j # 1 (and potentially also to i itself), but it is unknown when (and if at all) these shocks
will materialize. The network thus manifests itself only indirectly via the dynamics of jump
intensities as state variables, but not directly through contemporaneous shocks to the levels
of several cash flows. Aggregate consumption is driven by all individual jumps, but a given
jump affects the cash flow of only one industry at a time. The investor’s preference for early
resolution of uncertainty, i.e., the fact that she cares about the risk associated with future
values of the state variables, implies that the price-to-cash flow ratios of all assets will react
to a jump in any individual cash flow, and it is the structure of the network which determines

the sign and the magnitude of these reactions.

We choose this model for the following three reasons. First, mutually exciting processes
naturally feature directed links, with a shock going from 7 to 7, but not necessarily vice versa.
Second, the model belongs to the exponentially affine class for which there is a well-developed
solution theory, and thus it remains tractable with at least semi-closed form expressions for
all equilibrium quantities. A series expansion allows us to rewrite the market prices of jump
risk and jump exposures as functions of spc for arbitrary directed networks. Third, the crucial
model feature that cash flow shocks to one node in the network affect other nodes only with a
certain time lag has been documented empirically. In a recent paper, Carvalho, Nirei, Saito,
and Tahbaz-Salehi (2016) provide rich empirical evidence for such a delayed propagation
of cash flow shocks at the firm level in a natural experiment setting around the nuclear
incident of Fukushima in 2011. They summarize the intuition behind their result as follows:
“When faced with a supply-chain disruption, individual firms are unable to find suitable
alternatives in order to completely insulate themselves from the shock (at least in the short
run). This is consistent with an emerging literature [...| that emphasizes the importance of
search frictions and relation-specific investments along supply chains.” (p.34). However, even
though the cash flow shocks propagate with a time lag, equilibrium prices react immediately
to any shock in the economy since markets are efficient. It is precisely this instantaneous

reaction of prices to cash flow shocks propagating slowly over time that is at the heart of



our equilibrium model.

We close the paper by presenting some suggestive empirical evidence for our theoretical
channels. Since we propose a consumption-based asset pricing model, industry cash flow data
are the quantity to be modeled in this exercise.? We estimate an empirical cash flow network
by applying the generalized variance decomposition method suggested by Diebold and Yilmaz
(2014) to the earnings time series of 14 NAICS industries. Given spc for these industries, we
regress Sharpe ratios (as a proxy for the market prices of risk), return volatilities (as a proxy
for price exposures), and average excess returns of value-weighted industry portfolios on this
measure. In line with the model, we find in cross-sectional regressions positive coefficients
for Sharpe ratios, negative coefficients for return volatilities, and insignificant coefficients for

average excess returns.

Our paper is linked to several strands of literature. First, there are papers studying the
asset pricing implications of networks at the production level. Herskovic (2018) extends the
input-output framework of Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) to a
time-varying network and highlights the role of sparsity and concentration of an entire net-
work for capturing aggregate risk. Gofman, Segal, and Wu (2018) determine a firm’s vertical
position in the supply chain and calculate a top-minus-bottom spread which they explain
in a production economy with layer-specific capital. In an international context, Richmond
(2016) relies on Katz centrality and finds that more central countries have lower interest
rates and currency risk premia. The purely empirical papers by Ahern (2013) and Aobdia,
Caskey, and Ozel (2014) link equity returns to trade flows between industries. However, none
of these papers focus explicitly on the impact of directedness, i.e., the magnitude and the
direction of all the links of an asset, which is the key aspect we emphasize.? Second, Buraschi
and Tebaldi (2018) model cash flows via jumps which are not mutually exciting. However,
their focus is not on directed links, but on systemic risk in banking networks. A third strand

of literature analyzes networks estimated from return data. An example for such papers

2We restrain from using input-output production data to construct our cash flow network. While it is
intuitive to assume that a firm or industry which is central in the production input-output network is also
central in the cash flow network, it is not clear at all whether a similar relation also holds with respect to
direction. Empirically, Carvalho, Nirei, Saito, and Tahbaz-Salehi (2016) document that cash flow shocks can
propagate both upstream and downstream along the supply chain. Consequently, directed links at the cash
flow level cannot necessarily be traced back to links of the same direction at the production level.

3There is also a strand of literature on production or supply chain networks in economics, however, they
do not focus on the asset pricing implications of network structures. Examples include, among others, Long
and Plosser (1983), Gabaix (2011), Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012), Carvalho and
Voigtlander (2015), Wu (2015), Acemoglu, Akcigit, and Kerr (2016), Carvalho, Nirei, Saito, and Tahbaz-
Salehi (2016), Barrot and Sauvagnat (2016), Wu (2016), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017),
Ozdagli and Weber (2017), and Tascherau-Dumouchel (2018). Carvalho (2014) provides an excellent review
of this literature.



is Diebold and Yilmaz (2014). Many papers dealing with the measurement of systemic risk
also follow this route, e.g., Billio, Getmansky, Lo, and Pelizzon (2012) and Demirer, Diebold,
Liu, and Yilmaz (2017). The main difference between these papers and ours is that we model
the underlying fundamentals, i.e., cash flows, and prices and returns are then endogenously

determined in equilibrium.

Finally, Ait-Sahalia, Cacho-Diaz, and Laeven (2015) are the first to discuss the role
of mutually exciting jumps in finance applications. The methodological framework of our
equilibrium model goes back to the paper by Eraker and Shaliastovich (2008). Besides, there
is an increasing literature about consumption-based asset pricing models with stochastic
jump intensities in the endowment process. For instance, Wachter (2013) and Gabaix (2012)
analyze the equity premium puzzle and the excess volatility puzzle in an economies with
a stochastic intensities for rare consumption disasters, but do so in models with only one

endowment stream, which obviously does not lend itself to any network applications.*

1. Model

1.1. Fundamental dynamics

We assume a Lucas endowment economy. Log aggregate consumption y; = In'Y; follows

dyt = /,Ldt+ ZKJ deJ,

j=1

where p is the constant drift rate and the N;, (j = 1,...,n) are self and mutually exciting
jump processes with constant jump sizes K; < 0.> Their stochastic jump intensities ¢;; have

dynamics

dﬁjﬂg = Kj (EJ - gjy,g) dt + Z 6j,i dNi7t. (1)

=1

4This framework is extended to a two-sector economy with jump intensities driven by correlated Brownian
motions in Tsai and Wachter (2016) and towards CDS pricing in Seo and Wachter (2018). Benzoni, Collin-
Dufresne, Goldstein, and Helwege (2015) analyze defaultable bonds subject to contagion risk in a general
equilibrium model. Nowotny (2011) investigates a one-sector economy with consumption following a self
exciting process. Branger, Kraft, and Meinerding (2014) show that self exciting processes can endogenously
evolve in a framework with learning about latent disaster intensities. A comprehensive summary of the
disaster risk literature is provided by Tsai and Wachter (2015).

5We do not include diffusion terms in the dynamics of aggregate consumption for parsimony. One could
of course generalize the model to incorporate additional types of diffusive risk premia, e.g., by making the
expected consumption growth rate time-varying, as long as the framework remains affine.



The coefficients [3;; represent discrete changes in ¢;; induced by a jump in N;;. The param-
eters f3;;, collected in what we call the “beta matrix” or the connectivity matrix, completely
determine the structure of a given network.® To preclude negative intensities we assume
Bji > 0 for all pairs (j,1).

There are n industries in the economy, indexed by ¢, with the following dynamics for

log cash flows y; ;:
dy@t = U dt + Ll dNi,t (Z = 1, . ,n). (2)

We do not link aggregate consumption to the sum of cash flows, but model cash flows as
claims on certain risk factors in the consumption process. The difference can be thought of,
e.g., as the investor’s implicit labor income. Note that this specification is consistent with
empirical data, e.g., Santos and Veronesi (2006) point out that the sum of cash flows is only
a fraction of aggregate consumption. This assumption is present in asset pricing models like
Campbell and Cochrane (1999), Longstaff and Piazzesi (2004), Bansal and Yaron (2004),
Backus, Chernov, and Martin (2011), or Barberis, Greenwood, Jin, and Shleifer (2015).

Equations (1) and (2) formalize how the beta matrix gives rise to a dynamic shock
propagation mechanism by which negative shocks to one cash flow stream can spread across
the economy. With 3;; > 0, a downward jump in cash flow 7 immediately increases the jump
intensity of cash flow j by the amount (;;. Once the increased intensity ¢;; indeed leads
to a jump in cash flow j and there is a nonzero coefficient 3y ;, the initial shock is passed
on to asset k£ and can in this way be propagated through the whole network. Note that our
specification is general in the sense that it also allows for “feedback loops”, i.e., depending on
the structure of the network, an initial shock to node ¢ can, after a number of intermediate
steps, eventually reach node 7 itself again. Nevertheless, each jump only affects one cash flow
directly, so that network connectivity is captured exclusively via linkages in the dynamics of

the state variables, not at the cash flow level itself.

Mutually exciting jumps provide certainly not the only, but a very lean and reduced-
form modeling tool to capture exactly the above intuition. An initial cash flow shock in
industry ¢ increases the probability of future cash flow shocks to a connected industry j # i
(and potentially also firm i itself), but it is unknown when (and if at all) these shocks
will materialize. Stated differently, a cash flow shock of one firm changes the conditional
distribution of future cash flows of other firms, but does not affect the level of these cash

flows instantaneously. The structure of the jump processes in our model thus differs in a

60ur network is weighted in the sense that the links between nodes are represented by (positive) real
numbers, not just by the binary 0-1 information whether two nodes are linked or not.



time series and in a cross-sectional dimension from, for instance, contemporaneous jumps in
many assets. Representing this time dimension of shock propagation alternatively by, e.g., a
discrete-time vector autoregressive model would lead to the problem that the sum of AR(1)

processes is not necessarily an AR(1) process itself (see Granger and Morris (1976)).

As stated above, our specification ensures that the vector Xy = (v, Cr 4, .-, lnt, Y1t - - - ,ym)'
follows an affine jump process.” The joint process (N, ¢;) is Markov. In all applications of the

model, we assume r; > 3;; for i = 1,...,n, so that the vector of intensities ¢ is stationary.®

In the following analyses, we refer to one particular measure for the directedness of
cash flow shocks. The shock propagation capacity, spc, of asset i is defined as the respective

column sum of the beta matrix without the diagonal entry:°

spc; = Zﬂj’i. (3)

j=1

J#
This measure has been proposed by, e.g., Jackson (2008) and Diebold and Yilmaz (2014)
and represents the total strength of the network links going from node ¢ to all other nodes

in the network. In the framework of our model, the higher the spc of a given node, the more

a shock to its cash flow increases the jump intensities of other nodes.!”

1.2. Market prices of jump risk

Our economy is populated by a representative agent with an infinite planning horizon. We
assume that the agent has recursive preferences so that the risk generated by state variables

(in this case the intensities ¢;;) will be priced in equilibrium.

The derivation of the model solution closely follows Eraker and Shaliastovich (2008).!

They show that the continuous-time dynamics of the pricing kernel M, can be written as
0
dlth = —00dt— (1 — 9) dtht - Edyt,

where 0 is the subjective time preference rate, 7 is the coefficient of relative risk aversion,

“See Appendix A for details.

8See, e.g., Ait-Sahalia, Cacho-Diaz, and Laeven (2015) for details about mutually exciting processes, in
particular, concerning conditions for stationarity.

9Disregarding the diagonal entry is standard practice in the literature, see Diebold and Yilmaz (2014).

10 Although we call spc a measure of directedness, it can of course also be applied in an undirected network,
i.e., in a network where the connectivity matrix is symmetric.

HDetails are presented in Appendix A.



¥ is the elasticity of intertemporal substitution (EIS), and 0 = 117'1. We assume that the

representative agent has a preference for early resolution of uncertainty, implying v > i and
thus 6 < 1.

The return on the consumption claim R, satisfies the following continuous-time version

of the Euler equation

1
- —_E
0 dt "

eln Mi+In Ry

d (eln M;+1n Rt) ]

and follows from the dynamics of the log wealth-consumption ratio v and aggregate con-
sumption. To compute R;, we use the Campbell-Shiller log-linear approximation dln R; =
kyodt + ky1dvy — (1 —ky1) vpdt + dy, with linearizing constants k,o and 0 < k,; < 1.
Employing the usual affine guess for the log wealth-consumption ratio vy, i.e., assuming
v =A+ B'l, with B = (By,...,B,) and {; = ({14,...,L,+)", we can solve numerically for

the coefficients A and B as well as for the linearizing constants.

The dynamics of the pricing kernel are

dM;
M,

= —rdt — Y MPJR; (dN;; — {;,dt),

=1

where r; is the equilibrium risk-free rate and MPJR; is the market price of risk for the jump

process N;. These in general negative market prices of jump risk are given as

n
> B; B } (4)
j=1

where eV is the steady-state wealth-consumption ratio. The exponential

MPJR,L = 1- exp {—"}/ KZ -+ kul (‘9 - 1)

with k1 = 155,
term is a product of two factors. The first one, exp {—~ K;}, represents the compensation
for the immediate shock caused by the jump in cash flow i. Since K; < 0 these market
prices of jump risk are in general negative. The second one with the remaining exponents is
the compensation for the risk caused by variations in the state variables and is one of the
key features of our model. It depends on the impact of the intensities ¢; on the equilibrium

wealth-consumption ratio, represented by the components of the vector B.

The coefficients in B depend on the structure of the network, and they are in general
not equal across all 7 = 1,...,n. Therefore, we cannot immediately formulate the market
prices of risk as functions of network measures such as spc just from Equation (4). To obtain

predictions for how the structure of the network affects the market prices of risk, we derive



the following proposition through a first-order approximation.!?

Proposition 1. Assume thatk, = ... =k, =k and K1 = ... = K, = K. Then, the market

price of jump risk MPJR; satisfies
MPJR; = 1—exp {.A + B (Bii + spe;) + O (52)} ,
where the coefficients A and B are given by

A = —K
(0—1) (1 —exp{K (1-7)})
0 [(1-r) - 2]

N
Il

and O(B?) denotes polynomial terms of order 2 or higher in the coefficients of the network

matrix. Defining the first-order approximation
MPJR* = 1—exp{A+ B (fi;+ spc;)} (5)

and assuming v > 1, 0 <0, 0 < k < 1, and K < 0, we obtain the following results:

(1) A>0 and B > 0.
(2) If spe; > spc;, then |MPJR;*| > |MPJ -

Proof: See Appendix B.1.

The second exponential factor on the right-hand side of (5) is one of the key features of
our model. The spc of an asset is the main driver of the equilibrium market price of risk. The
proposition states that the market prices of risk for jumps associated with high spc assets
are larger (in absolute terms) than those of low spc assets (note that .4 and B do not depend
on 7).13
The economic intuition behind this key result is the following. By definition, high spc

industries have more links or stronger links to other industries, relative to their low spc

12First-order approximations are used, e.g., in Carvalho, Nirei, Saito, and Tahbaz-Salehi (2016) or Walden
(2018) to make statements about general network structures. A different strategy to obtain closed-form
solutions for equilibrium quantities as functions of network measures is to focus on special cases in which the
connectivity matrix is very sparse. For instance, in Online Appendix A, we derive such closed-form solutions
without approzimations in so-called star (or core-periphery) networks.

13In Appendix B.3, we analyze the quality of the first-order approximation in Proposition 1 by regressing
the approximate solution (5) on the exact solution (4) for the empirical network estimated in Section 2.
The R? of this regression is 0.98, the ordering of the assets, and the signs of the market prices of risk are
all preserved. The slope of the regression line is 0.26, implying that the higher-order terms omitted in the
approximation are quantitatively sizable, but do not change any of our model results qualitatively.



counterparts. Hence, cash flow shocks originating from a high spc industry have a more
pronounced impact on the rest of the economy, i.e. they increase the aggregate risk of sub-
sequent shocks by a larger amount. In models with stochastic cash flow jump intensities and
recursive preferences, the wealth-consumption ratio is generally decreasing in the aggregate
jump risk.'* The wealth-consumption ratio in our economy thus reacts more negatively to
cash flow shocks of high spc assets. These shocks are thus more “systematic” and carry a

higher (i.e. more negative) market price of risk in equilibrium.

The proposition explicates that a necessary condition for this key result is that B > 0,
and this condition is satisfied under some mild preference parameter restrictions like 6 < 0,
which implies v > 1 (if v > 1). In this situation, the intertemporal substitution effect
dominates the income effect, so that the investor wants to consume more and save less in
bad times with high jump intensities. The proposition also shows that in the special case of
CRRA utility (# = 1, implying B = 0), the second term in Equation (5) vanishes, implying
that state variable risk is not priced and that the market prices of risk do not depend on the
network structure. Finally, MPJR; is the larger, the larger the impact of jumps in asset i on

aggregate consumption, as measured by K.

1.3. Jump exposures

In analogy to the return on the consumption claim, the returns R;; on the individual cash

flow claims satisfy the continuous-time Euler equations

1
0 = —E
dt "

eln Mt-i-ln Ri,t

d (eln Mi+In Ri,t) ]

To compute the expected excess return on asset 7, we proceed as in the case of the con-
sumption claim, i.e., we employ an affine guess for the log price-to-cash flow ratio of asset
i, vy = A; + Clly with C; = (Cia,...,Ciy), and use the Campbell-Shiller approximation
dInR;; = kiodt + ki1dviy — (1 — ki) vip dt + dy;; with linearization constants k; o and
0 < k;1 < 1. Again, we solve for the coefficients A; and C;; (j = 1,...,n) as well as for the

linearization constants k; o and k;; numerically.

The return on the ¢-th individual cash flow claim is then given by

ARy = ...dt+>» JEXP;;dN,,

=1

14This has been shown, e.g., by Wachter (2013).



with the jump exposures

exp (Lz + kz‘,l ZZ:I Oi,k 6k,z) -1 fOI ] =1

n o (6)
exp (ki1 Y 1 CikBry) —1 for j #i.

JEXP;; = {
The exponential term in the exposure of asset ¢ to jumps in its own cash flow, JEXP,;,
has two components. First, there is the price change due to the immediate cash flow shock,
represented via the jump size L;. By assumption this component is only present in the
exposure of asset ¢ to jumps in its own cash flow ¢ because y; is exclusively affected by N;,
i.e., jumps in other intensities do not have a direct impact on the cash flow y;. The second
term is a special feature of models with recursive utility and captures the effect of a shock in
cash flow j on asset i’s price-to-cash flow ratio. For j # 4, the exposure JEXP; ; only consists

of this valuation ratio effect.

In Equation (6), the coefficients C; ; depend on the network structure. Since they will
not coincide for all k = 1,...,n in general, we cannot simply factor out spc in Equation (6).

Therefore, we again apply a first-order approximation allowing us to formulate the following

proposition.!®

Proposition 2. Assume that k1 = ... =k, =k and K1 = ... = K,, = K. Then, the jump
exposures JEXP; ; of asset i against shocks to cash flow j satisfy the equation

P {Ci Dkt B T Di Big +O(B%) g — 1 for j #i

JEXP;; = n 9 .
exp {L +C; - Ek:m# Bri+Di- Bii+0(B%) ¢ —1 forj=i,

where the coefficients C; and D; are given by

l—exp{—K~} -5 [1—exp{K (1-7)}]

C =

1—/{—ki1
o Loexp{l— Ko} -5 (1 —exp{K (1-9)}]
i 1

1—r<;—ki1

and O(?%) denotes polynomial terms of order 2 or higher in the network coefficients. Defining

the first-order approzimation

exp {Ci : Zzzl,k# Brj+Di-Bijp—1 forj#i

JEXP = -
’ exp {L +Ci D 1 i Bri + Di Biip — 1 forj =i

(7)

15Tn Online Appendix A, we show that qualitatively similar closed-form solutions for the return volatility
can be obtained without approzimations in so-called star (or core-periphery) networks.
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and assuming v > 1, 0 < k < 1, and —log(2) < K < 0, we obtain C; > 0 for all i.
Additionally assuming 0 < 0, we obtain

(1) D; <0, and D; — C; < 0 for all i.

(2) If JEXP;;, JEXP; <0, ki1 = kj1, and spc; > spe;, then |JEXP;| < |JEXPS|.

Proof: See Appendix B.2.16

For j # i, the expression for J EXP;’; comprises two terms. The quantity D; 3; ; describes
a price effect through direct spillover of shocks from j to 7. A jump in asset j increases the
jump intensity of asset ¢ by 5, ;. Since D; < 0, the reaction of the price-dividend ratio of 4

due to this direct effect, exp {D; §; ;} — 1, is negative.

The term C; - ZZZM i Pr,j represents an equilibrium “hedge effect”. A jump in asset
J increases the jump intensities of (some or all) other assets k # i, and the price of asset
1 increases through this mechanism, since C; > 0. This hedge effect is always positive,
irrespective of the preference parameter 6. Intuitively, the hedge effect makes assets which
are not directly affected by a jump in asset j’s cash flow relatively more attractive. For j # i,

we can rewrite
JEXP% = exp{Ci-spc;+Ci-Bj;+ (Di = C;) Bi;} — 1, (8)

which implies that the hedge effect is larger for shocks originating from high spc assets than

from low spc assets.

For j =14, this positive hedge effect reduces the negative cash flow effect of a jump in

i on the price of asset i itself, represented by exp {L} — 1. Again, we can write
JEXP;; = exp{L+C;i-spc, +D;- i} — 1,

i.e., the hedge effect is more pronounced for a high spc asset than for a low spc asset.

The ultimate sign of JEXP]” depends on the trade-off between the hedge effect,
C; - ZZ:M i Brj, and the direct price effect, D; - 3; ;, and thus on the network structure.
Despite the fact that the hedge effect is positive for any network structure and any prefer-

ence parameter #, the choice of preferences is still very important for the overall properties

16Tn Appendix B.3, we analyze the quality of the first-order approximation in Proposition 2 by regressing
the approximate solution on the exact solution of Equation (6) for the network estimated in Section 2. The
R? of this regression is 0.98, the ordering of the assets, and the signs of the jump exposures are all preserved.
The slope of the regression line is 0.77, implying that the higher-order terms omitted in the approximation
are quantitatively sizeable, but do not change any of our results qualitatively.
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of the model. For L > K, CRRA preferences (§ = 1) will lead to all cross-exposures
JEXP}; > 0 being positive, so that here the hedging effect massively outweighs the di-
rect negative effect. With recursive preferences, on the other hand, there will also be pairs
of assets with JEXP}” < 0, i.e., there will be cases when the hedging effect is not strong
enough to dominate the direct negative effect. For i = j, the exposure JEXP}} comprises a
third component, L, and if this parameter is chosen strongly negative, then JEXP}; will be

negative.

1.4. Expected excess returns

Finally, the local expected excess return of asset ¢ can be written as

1 n
B [dRi) =7y = ; ;s MPJR, JEXP; ;, (9)
i.e., the risk premium of asset 7 is given by the sum of the products of jump intensity, market

price of risk, and jump exposure over all n jump components.

Although the expected excess return depends on all market prices and all exposures,
the summand MPJR; JEXP; ; is usually the largest in this sum because the exposure JEXP; ;
also comprises the direct cash flow effect captured by the cash flow jump size L, as shown in
Equation (7). Propositions 1 and 2 show that MPJR; is higher for high spc assets than for
low spc assets, whereas the relation is the other way around for JEXP;;. Thus, we cannot
obtain unambiguous cross-sectional predictions regarding the impact of spc on expected

excess returns.

For this insight, recursive preferences are crucial. With CRRA utility, the market price
of risk on all jumps would be identical, and all cross exposures would be positive for L > K ~.
So the trade-off outlined above does not exist and high spc assets earn larger expected excess

returns than low spc assets in a CRRA economy.

2. Suggestive empirical evidence

To present suggestive evidence for the theoretical channels outlined above, we use a time
series of log earnings growth rates for 14 industry portfolios which we constructed based
on the NAICS code of all firms in the CRSP/Computstat merged (CCM) fundamentals
quarterly database over the sample from 1966-Q2 to 2014-Q4. This time series allows us to

estimate the directed earnings network following the procedure proposed by Diebold and
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Yilmaz (2014).1" The first step is to estimate a 14-dimensional VAR(1) process based on our
earnings growth time series, i.e., z; = ¢g + ¢1 2,1 + &;. From the coefficient matrix ¢; and
the covariance matrix of the shocks €, we compute generalized variance decompositions of
quarterly earnings with a forecast horizon of H = 4 quarters.'®* We denote the fraction of
H-quarter forecast error variance of industry ¢’s earnings explained by shocks in industry
j’s earnings by d, ;. This gives us a 14 x 14 matrix (d; ;)i j=1,..14, which Diebold and Yilmaz
(2014) refer to as the connectedness table. This matrix serves as our empirical network
matrix from which we compute the shock propagation capacity spc; for industry j analogous
to Equation (3) as spc; = Z%} d; ;. Diebold and Yilmaz (2014) call this measure total

directional connectedness to others from j.

According to the firm’s NAICS code, we form value-weighted industry portfolios and
we calculate three variables over the whole sample, which serve as dependent variables in our
regressions. The average excess return of an industry portfolio is the mean of the difference
between its log return and the log three-month Treasury bill return. Return volatilities are
calculated as the standard deviations of log returns. Sharpe ratios are computed as average

excess returns divided by return volatilities.

The Sharpe ratio of an industry serves as a proxy for the market price of risk for cash
flow shocks of the respective industry, MPJR, because these market prices of risk are not
observable empirically. Recall from Equation (9) that the expected excess return on asset
i is given as - E[dR;] —r = > i1 t; JEXP; ; MPJR;. The i-th summand is by the far the
largest on the right-hand side, since JEXP; ; is the only exposure containing the direct cash
flow effect represented by the jump size L. The expected excess return of an asset is thus
mostly driven by the response of its price and of the pricing kernel to its own cash flow
shocks. Therefore we use the Sharpe ratio of asset ¢ as a proxy for MPJR; and the return

volatility as a proxy for JEXP, ;.

Panel A in Table 1 reports the results from this exercise. In the cross-sectional re-
gressions, the independent variables are the industry shock propagation capacities and the
dependent variables are return volatilities, Sharpe ratios, and average excess returns.!® In

line with the model, we find positive and significant coefficients for Sharpe ratios, negative

1"We thank Francis Diebold and Kamil Yilmaz for sharing their code.

8There is no clear guidance towards the optimal choice of the forecast horizon H. As documented by
Diebold and Yilmaz (2014), who choose H = 12 days for their daily stock return data, a very short horizon
produces noisy estimates, but the estimates stabilize with longer horizons. We find similar, albeit weaker,
effects of the forecast horizon in our estimation and, therefore, report results for H = 4 quarters in the
following and present those for H = 1,2,3 in Online Appendix C. There we also explain the details of the
data construction process, provide plots for the empirical cash flow networks for different forecast horizons,
and report summary statistics for spc and the industry portfolio returns.

19 Although one of the three regressions is redundant, we report all three for the sake of completeness.
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and significant coefficients for return volatilities, and insignificant coefficients for average
excess returns. Since the effects of spc on the market price of jump risk and on price expo-
sures have opposite signs, the impact of directedness on expected excess returns can only
be assessed appropriately when the two opposing effects described above are disentangled.
Finally, the coefficients in the Sharpe ratio and return volatility regressions are also econom-
ically significant. A one-standard-deviation difference in spc leads to a difference in Sharpe
ratios of roughly 8.18 - 0.16 ~ 1.31 percentage points monthly or —4.41-0.16 ~ —0.71 for

return volatilities.

The existing literature on network linkages and cross-sectional asset pricing features a
different approximation for the relative importance of a node in a network, namely eigenvec-
tor centrality.?’ Therefore, Panel B in Table 1 presents the results of regressions analogous
to those shown in Panel A, but now with evc as additional regressor where we orthogonalize
eve with respect to spe to quantify its additional explanatory power beyond spc.?! While
evc remains insignificant for Sharpe ratios, it seems to have explanatory power beyond spc
for the cross-section of return volatilities for industry portfolios. Finally, in the bivariate re-
gressions for average excess returns, eve yields negative and significant coefficients. Overall,
we conclude that our theoretically motivated measure of directedness spc indeed contains

additional information above and beyond the information captured by evc.

3. Conclusion

Networks have received considerable attention in the finance and economics literature. In this
paper, we analyze the implications of directed links in cash flows networks for equilibrium
returns. Our analysis is motivated by Carvalho, Nirei, Saito, and Tahbaz-Salehi (2016) who
provide rich empirical evidence for a delayed propagation of cash flow shocks, both at the
firm and at the industry level, in a natural experiment setting around the nuclear incident
of Fukushima in 2011. We model this delayed propagation with mutually exciting processes
which naturally feature directedness and capture the intuition that cash flow shocks to one

node in the network affect other nodes only with a certain time lag.

In our equilibrium model, we combine these self and mutually exciting jump processes
for cash flows with a representative investor with recursive preferences. We prove the following

cross-sectional statements for arbitrary directed networks: (i) Cash flow shocks in industries

20We provide more details on this concept, which has been introduced by Bonacich (1972a,b) and applied,
e.g., by Demirer, Diebold, Liu, and Yilmaz (2017) and Walden (2018), in Appendix C.

21For the sake of brevity, we again report the results for H = 4 quarters in the following and present
those for H = 1,2,3 in Online Appendix C.6 which also contains the summary statistics for evc.
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with high shock propagation capacity (spc) have a high market price of risk. (ii) The response
of the price-to-cash flow ratio of an industry to its own cash flow shocks is less pronounced
for industries with higher spc. Importantly, when it comes to expected excess returns, the
effects of spc on market prices of risk and on exposures work in opposite directions, so that

the overall impact of spc on risk premia depends on the tradeoff between these two forces.

We close the paper by presenting some suggestive empirical evidence for our theoretical
channels, where we estimate an empirical network from industry cash flows by applying the
Diebold and Yilmaz (2014) generalized variance decomposition methodology. In line with
the model, we find that high spc industries have lower return volatilities and higher Sharpe
ratios than their low spc counterparts. Regression coefficients for average excess returns are,

however, insignificant.

To sum up, the innovative combination of self and mutually exciting jump processes
with recursive preferences allows for the integration of directed networks into a tractable equi-
librium asset pricing model. Our results indicate that it is necessary to decompose equilibrium
asset prices and returns into their constituents in order to understand the implications of

directed cash flow shock propagation.
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APPENDIX

A. Model solution

To solve for the equilibrium we apply the approach proposed in Eraker and Shaliastovich (2008).
The vector X = (y,41,...,4n,y1,-..,yn) follows the affine jump process

dX,
where we use the following notation:

W 0
K1 Zl —RK1
with M =] k,¢, | and K = —Kn ,
H1 0
L, 0 0 0
o ly=1Iyp+ 11 Xy
0 0 1 00 ... 0
with [g = : and {; = : : )
0 0 0 10 0
K K,
Bia Bin
o = < ‘Sl,h ceey 'Sn,t ) = 671,1 /Bn,n
Ly 0
0 L,
/ / / / / /
The jump transform g (u) = E [(e“ S et fn*f)} is in our case simply equal to (e“ St et 5”7*) ,
since the jump sizes are all constant.
We define the selection vectors dy, d¢,, (i = 1,...,n), and dy; (i = 1,...,n) implicitly via

= p(Xy) dt + & dNy,

dyt = 5ly dXt, dfz‘,t = 52,@ dXt, and dy@t = (5;71 dXt
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The continuous-time version of the Euler equation can be written as

0 iEt [d(elth+lnRt)

- dt eln My+In Ry ’ (Al)

where R is the return on the claim to aggregate consumption. The logarithm of the pricing kernel

has the dynamics
0
dlth = —00dt— (1 — 9) dlDRt — @dyt
We apply the usual affine conjecture for the log wealth-consumption ratio

v = A+(0,Bl,...,Bn,O,...,O)Xt
= A+(Bl""7Bn)€t,

and use the Campbell-Shiller approximation for the return on the consumption claim
dinR; = ]C'U,() dt + kv,l dvy — (1 - kv,l) vp dt + dyy.

Combining the Campbell-Shiller approximation, the affine guess for v, and the dynamics of the log

pricing kernel, we get

d (eln M;i+In Rt)

— iR = {00+ 0k =0 (1 - k1) (A4 B'Xe) +x, (M+ LX)} dt

+ {exé & 11} dN,, (A.2)

where

1
vy — 9{(1—1/}) 5y+kv713]
1 !
= (—9 <w—1),ekv,lBl,...,9kv,1Bn,o,...,0>,

and where 1 is a vector of ones with length n. We plug expression (A.2) into the Euler equation (A.1)

to get a system of equations for A and B:

0 = 0[-0+kpo— (1—kp1) A+ M xy + 1 [0(xy) — 1] (A.3)
0 = K'xy—01—ky1) B+1j [0(xy) —1]. (A.4)
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We have two additional equations for the loglinearization constants k, o and ki 1:

0 = —kyo—Inkys+ (1 —ko1) [A+ B px] (A.5)
0 = A+Bux —In(ky1) +In(1—ky1), (A.6)

where px is a vector with i-th component E [X;] if that expectation is finite and 0 otherwise. Due
to the presence of the mutually exciting jump terms, the long-run means Z, i.e., the unconditional
expectations, are not equal to the respective mean reversion levels /;, as it would be the case, e.g.,
for a standard square-root process. According to Ait-Sahalia, Cacho-Diaz, and Laeven (2015), the

Z- are the solution to the following system of equations:

A
G o= — 2101 (i=1,...,n). (A7)
ki — Bi
We assume x; > 3;; for i = 1,...,n to ensure that all the Z are positive.

We solve the four equations (A.3), (A.4), (A.5), and (A.6) via an iterative procedure. We
initialize k, 1 by setting it equal to J, then compute £, 0, A, and B. Given these we then compute

ky,1 again and iterate forward until the system converges.

The pricing kernel has dynamics

d My

M = —T¢ dt — []1 — 0 (—)\)]/ (dNt — gtdt)

with

A= 96, +(1—-0)k,1 B
= (v,(1 =) ky1B1,...,(1 =0) ky1By,0,...,0),

so that we can immediately read off the risk-free rate and the market prices of risk. The risk-free
rate is given as
re = ®p+ P X,
with
bp=006+(0—-1) [lnk:m + (ky1 — 1) B’,uX] + M X=1{ [o(=\) — 1]
and
D1 =(1-0) (ky1—1) B+K'X=1j [o(=\) —1].
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The market prices of jump risk are given as

MPJR;
: = [T—o(=)]
MPJR,,

1—exp(—yKi+kpys (0—1) [B1S11+ ...+ BpBnil)

1- exp (_'7 Kn + kv,l (9 - 1) [Bl 51,n +...+ Bn ﬁn,n])

The return on the consumption claim is given by
dR;, = {...}dt+{o(0y+ky1B)—1} dN;

with jump exposures

JEXP,
: = 0(6y +kv1 B) — 1,
JEXPy
where
JEXP,; =exp[Ki+ ko1 (Bifig+...+Bnfn1)] —1
fori=1,...,n.

To obtain the expected excess returns on the cash flow claims, we follow the same approach

as for the consumption claim. The continuous-time Euler equation again reads

1 d (eln Mi+In Ri,t)
0 = K :
dt elth—Han

Applying the Campbell-Shiller approximation
dln Ri,t = ki@o dt + ki,l d’U@t — (1 — kil'71) Vit dt + dyiﬂg
and the usual affine guess for the log price-to cash flow ratio

Vit = Ai—i-(0,0@1,...,Ci7n,0,...,0) X
= Al + (Ci,ly"'ac’i,n) gtv
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we arrive at

d (eln Mi+In Ri,t)

= {—(5(9 — (1 — (9) [kv,O — (1 — kv,l) (A + B/Xt)] + k@o
—(L=kip) [Ai+ G Xe] + Xps M+KXy)} dt
+{es 1l an,, (A.8)

eln Mi+In Ri,t

where xy; = ki1 C; + 6y — A. Plugging (A.8) into the Euler equation yields a system of equations
for the coefficients A; and C;:

0 = —95—{—(1—9) [hl]{}v’l —(1—]{31)71) B,,MX] —lnki71+(1—k$i71) CZ/,UX
+M Xy + 1 [0 (xya) — 1 (A.9)
0 = K Xy,i + (1 — 9) (1 — kv,l) B — (1 — ki,l) C; + lll [Q (Xy,i) — ]l] . (AIO)

The two additional equations for the log-linearization constants k; o and k; ; are

0 = —kno —In k?i,l =+ (1 — kiJ) (Az + Cz/ /Lx) (A.ll)
0 = A+ Cz/ nwx — lnk'i,l + ln(l — ki,l) . (A.12)

The return of the individual cash flow claim ¢ is then given by
dRin = { . } dt + {Q ((5%1‘ + ki,l Cz) — ]l} dN;
so that the jump exposure of the return is thus given by

JEXP;

JEXP;; = [0(8yi + kip Ci) — 1]

JEXP;,,

exp (kix [CiiPria+...+CinBna]) —1

= exp (Li + ki1 [CiaPri+ ...+ CinBnil) — 1

exp (ki1 [Cia Pipn+ ...+ CinfBnn]) —1
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The expected return on the claim to cash flow ¢ can then be written as

1
— E; [dRi7t] = —In ki,l + (1 — ki,l) Cl/ (/LX — Xt) + [(5,‘ + ki71 Ci}/ (M + ]CXt)

dt
+ [Q (5y,i + ki,l Cz) — ]l] (l() + 1 Xt) .

The expected excess return is given by

1
pn Ei[dRi¢] —re = (lo+1h Xt)/ [0(Xyi +A)+0(=A) —o(xy,i) — 1]

which can be represented as

1 n
B[R] =1y = ; ;+ MPJR; JEXP; ;.

B. Approximation for general network structures

B.1. Market prices of jump risk
B.1.1. First approximation step

Rewriting Equation (A.4) for k1 = ... = kK, = Kk and K; = ... = K,, = K gives the following

system of equations

0 = B10[ky1 (1—r)—1]+exp{K (1 =) +0ky1 (Bi1f11+ ...+ Bnfn1)} —1

0 = Bn9 [kv,l (1 —K,) — 1] +6Xp{K (1 —’7) +0k}v’1 (Blﬁl,n++Bn/8n,n)} -1
and translating this into matrix notation yields
1 = 0k (1—k)—1] B4+exp{K (1—7)} exp{0k,: 5 B},

where now and in the following, the “exp” operator, applied to a vector, stands for element-wise

application of the “exp” operator to the vector.

Next, we apply the approximation exp () =1+ z+ O (mz) and solve for B:

—1
b <I"X"+6XP{K mlmﬁ/) PR e 0=

v,1

+0 (8% (B.1)
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where I,,x, denotes an n X n identity matrix and % < 0 since ﬁ > 1 — Kk (due to

kn,l

= s 151 —kfor 0 < m<1).
v,1 €

To conclude the first approximation step, we define

B = <Ian+e"p{K =) ! 1-exp{K (1-7)}]. (B2)

/
1—%—% 5) 0[]{:1)71(1—1%)—1][
B.1.2. Second approximation step
—1 _

Since the inverse term in Equation (B.1) has the structure of a Leontief inverse, (I — A)
I+ Al + A% + .. we rewrite (B.1) as:

+0 (8% (B.3)

To conclude the second approximation step, we define

oo <Inxn—e’<p{K =)} ! 1-exp{K(1-7)}. (BA)

[y 5') 0 Tko (1= %) — 1]

Plugging (B.3) into the market price of risk from Equation (4) and rewriting this in matrix

notation yields:

ko (6—1)

0 [kv,l (1 - ’{) - 1]
(0—1) (1 —exp{K (1-7)})
0 [(1-n) - -]

= 1—exp {A+ B (Baiag + spc) + O (87}

MPJR = 1 —exp{—vK-l— (8" [1 —exp{K (1—7)}] +0(52)]}

with A and B given in Proposition 1. Thus we define
MPJR*™ = 1—exp{A+ B (Bdiag +5spc)}. (B.5)

Fory>1,60<0,0<rx<1,and K <0, we have A > 0 and B > 0 since 11— > 1 — .
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B.2. Jump exposures
B.2.1. First approximation step

Rewriting Equation (A.10) for k1 = ... = k, = k and K; = ... = K,, = K gives a system of

equations for each i, exemplified in the following for ¢ = 1:

0 = B (kv,l — 1) (9 — 1) + 0171 (kl,l — 1) — K [Bl kv,l (9 — 1) + 0171 kl,l]
+exp{L —K~v+ i1 [Bikv1 (0 —1)+Ci1kii]l+...4+Bn1 [Bakva (0 —1)+Cinkia]} —1

0 = B, (kul — 1) (0 — 1) + Cl,n (k?171 — 1) — K [Bn kv,l (9 — 1) + Cl,n k171]
+exp{—K~v+Bin [Bikv1 (0 —1)+Ciikia]+...4 Bun [Bnkoa (0 —1)+Cik11]} — 1

Collecting terms and introducing matrix notation yields the following system for each i:

1 = B(0—1) kg (1=k)=1]+Ci [kip (1-r)—1]
+lexp{—K~} 1+ (exp{L — K~} —exp{—K~}) Inx1,i| ®exp {k%l 0—1)B8 B+ki1p Ci} ,

where now and in the following, e represents element-wise multiplication of the vectors. Ip,x1; is

an n X 1 vector with the i-th entry equal to 1 and zeros otherwise.

Again, we employ exp (z) =1+ 2+ O (1‘2) and solve for Cj:

@ <I+ oxp {—K A} 1+ (exp{L — K} —exp{-K~}) Inxui ﬁ’) _1 kit ( 1

1—,@—?{1 1—k)—1

x{]l—(&—l) [kor (1—k)—1] B

—[exp{—K~} 1+ (exp{L — K~} —exp{—K~}) Lx1i]® ko1 (0 —1) 3B

—exp{—K~} 1— (exp{L — K~} —exp{—K~}) Inxu] +0 (52) : (B.6)
where SR{=E7} 1+(6Xp{1L__K71}_eXp{_K7})I”X“ < 0 since ﬁ > 1—k (due to ﬁ = S s 1k
KR— ki,l Ty €, et

for 0 <k < 1).
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To conclude the first approximation step, we define

-1
. exp{—K~} 1+ (exp{L — K~} —exp{—K}) Inx1i _ . 1
cr = <I+ i ° [ i (l—r) =1

1—rK— Rl
x[ﬂ—(@—l) [kv1 (1—k)—1] B
—lexp{—K~} 1+ (exp{L — K~} —exp{—K~}) Lnx1i® ky1 (0 —1) 3B

—exp{—K~} 1— (exp{L — K~} —exp{—K~}) Inxl’i] . (B.7)

B.2.2. Second approximation step

Again the inverse term in Equation (B.6) has the structure of a Leontief inverse, and we rewrite
(B.6) as:

_ exp{—K~} 1+ (exp{L — K~} —exp{—K}) Inx1,i =
Ci - In><n - 1 K 1 ° ﬁ
YT kg

-k~ g5 1—k)—1

(e {=K} 1+ (exp{L— K7} —exp{—K ) xri .\ 1
o [ o

x[ﬂ—(e—l) (kw1 (1—k)—1] B
—lexp {~=K 7} 1+ (exp{L — K~} —exp{~K}) Lnx1,] ® ko1 (0 —1) f'B
—exp{~Kn} 1 (exp{L — K~} —exp{~K}) I} Lo ()

= (I _exp{-K7} 1+ (exp{L — K} —exp{—K}) Inx1, . ﬁ’) 1

1—k— 1—r)—1

i,1

x[]l—(@—l) [kor (1— k) —1] B
—[exp{=K~} 1+ (exp{L — K~} —exp{—K~}) Inx1i]® k1 (0 —1) f'B

—exp{—K~} 1— (exp{L — K~} —exp{—K~}) Inxl,l} + O (52) ) (B.8)

To conclude the second approximation step, we define

1—/<a—k31 1 (l-r)—1

o — (Im_exp{—m}ﬂ+<exp{L—Kv}—exp{—Kv}> Lnxai H) - 1

x[ﬂ—(@—l) [kv1 (1—k)—1] B
—lexp{—K~} 1+ (exp{L — K~} —exp{—K~}) Inx1i]® ky1 (0 —1) 3B

—exp{—K~} 11— (exp{L — K~} —exp{—K~}) Inxl’i] (B.9)
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Plugging (B.8) into the jump exposures from Equation (6) and rewriting them in matrix

notation yields:

JEXP; = exp {L Iyt +

-2 {_Ifj}ﬁ(iXpl{L} b, B Inx1i + O (6%) } —1.

ki1

Breaking this expression down into the jump exposures JEXP; ; yields:

JEXP;; = exp {Ci D heiki Brg +Di- Bij + O (8%) p — 1 for j#i
v exp {L +Ci+ D1 ki Bri + Di - Bii + O (B*) ¢t —1 forj=i
}—1 forj#i

exp {C; - spc; +C; - B + (Ds — i) Bij + O (8°)
exp{L—FCZ Spc; +D ﬁzzﬂLO(ﬁQ)

}—1 forj=i
where

1- % [1—exp{K (1-7)}] —exp{-K~}
1

1—f€—m
b _ L= e {K (1-7)} —exp{L - K9}]
L 1
1_“_1%1
exp{—K 1 —exp{L
p_c, — SPIZK}( : p{L})
171-171%1

Note that = > 1 — & (see above). For v > 1,0 < x < 1, and —log(2) < K < 0, we have C; > 0.
Addltlonally assuming 6 < 0, we obtain D; < 0, and D; — C; < 0.

Proof that C; > 0: We rewrite C; as follows:

o _ L= e K (-l -exp{-K}
l 1_H_ki11

exp{-K~7} [ (exp{K~} —1) +exp{K} —1]

e 1
1—& Fin

Here, we have 1 — k — Vll < 0 by assumption (since 0 < xk < 1). Moreover, we have exp {—K v} > 0
and 3 (exp{K~} —1)+exp{K} —1<0.

To see the last inequality, define

f(K) = exp{K~}—1—(exp{K}+7) (exp{K}—1)
= exp{K~}—1—exp{2K}—vexp{K}+exp{K}+~
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ff(K) = vexp{K~}—2exp{2K} -~ exp{K}+exp{K}
v (exp {K v} —exp{K}) +exp{K} —2exp{2K}

Ify>1and —In(2) < K <0, then f’ (K) < 0 which implies f (K) > 0. In particular,

exp {K 7}~ 1

K —0
exp (KT — 1 < exp{K}+~v<

from where the statement then follows. Altogether, we thus get C; > 0.
Proof that D; < 0: We rewrite D; as follows:

1— 2L [1—exp{K (1—7)}] —exp{L — K~}

D; = 6 ;
l—m—km

_ %—Fexp{—K'y} [(1 — %) exp{K} —exp{L}]
1—,'£—k1_11

Again, we have 1 — k — k—ll < 0. Moreover, we have
T,

1

7 +exp{~K7) [( —9> exp{K}—exp{L}] >0
o exp {~K ) [( —;) eXp{K}—eXp{L}] > -
o <1 _ ;) exp{K}—{—%exp{Kv}—eXp{L} >0
s (exp {K} —exp{L}) + + (exp (K} —exp{K}) > 0

0

which is true if L < K, v > 1 and 6 < 0. This completes the proof.

B.3. Approximation quality

In this section, we assess the quality of the first-order approximations derived in the Propositions 1

and 2. More precisely, we compare those against the results from the numerical solution of the model

using the empirical network for H = 4 determined in Section 2 and the following parametrization.

For the representative investor, we assume a relative risk aversion v = 10, an intertemporal elasticity

of substitution ¥ = 1.5, and a subjective time discount rate § = 0.02. The expected growth rate p

and the jump size K1 = ... = K4 of log aggregate consumption are set equal to 0.02 and -0.004. For

the industry cash flows, the expected growth rates 1 = ... = 14 and the jump sizes Ly = ... = Ly

are chosen to be 0.02 and -0.04. With respect to the stochastic jump intensities, we assume mean

reversion speeds of k1 = ... = k14 = 0.85 and mean reversion levels of £; = ... = {14 = 0.05.
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As explained in Appendix B.1, MPJR** is based on two approximation steps, B* and B**.
The left part of Figure 1 shows the result of the first approximation step graphically by plotting B*
against the exact solution B of Equation (4). The middle part shows similar results for the second
approximation step, B** given in Equation (B.4). Finally, the right part of Figure 1 depicts the full
approximation of the market prices of risk MPJR** against the exact MPJR.

Regressing B* (or B**, resp.) on B yields the following parameter estimates, t-stats, R?, and

correlations:
Bf = —0.0003 0.8993 B;
i + o R? = 0.9992, Corr = 0.9996
(—8.5) (125.3)
B = —0.0015 + 02524 B;
i + o R? = 0.9848, Corr = 0.9924.
(—41.1) (28.2)

Performing a similar regression of MPJR** on MPJR gives:

MPJR;* = -0.0377 + 0.2576 MPJR; + w;,

R? =0.9848, Corr = 0.9924.
(—40.4) (27.7)

Altogether, we see from the figures that the first approximation step hardly affects the B coefficients
at all. The second approximation step (approximating the Leontief inverse) changes all coefficients
quantitatively, but not qualitatively. The ordering of the coefficients is preserved, the sign is pre-
served, the correlation between approximated and exact coefficients is 99%. Only the size and the

dispersion is reduced.

Similarly, JEXP** is based on two approximation steps, C* and C**, and its approximation

quality is shown in Figures 2. The corresponding regressions yield

CF = —0.0054 0.9578 C;
i + o R? = 0.9970, Corr = 0.9985.
(~59.8) (390.3)
CF = —0.0036 + 0.7668 C; :
i + o R? = 0.9879, Corr = 0.9939.
(—24.1) (53.6)
JEXP® = —0.0010 + 0.7665 JEXP;
i * o R? = 0.9884, Corr = 0.9942.
(~10.7) (53.9)

Again, we see that the second approximation step is more severe than the first one. However, it
does not change the coefficients qualitatively. The ordering of the coefficients as well as the sign

are preserved and the correlation between approximated and exact coefficients is 99%.
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C. Eigenvector centrality

Let the network matrix 8 be diagonalized as follows:

B = S-diag(¢r, ..., dn)- S, (C.1)

where the ¢;’s are the eigenvalues, ordered by absolute size, the columns of S are the eigenvectors
of 3, and the rows of S~! are the eigenvectors of the transposed matrix 8’ (usually all normalized
to have unit length). The eigenvector centrality of node i is defined as the i-th entry of the first
column vector in S (the so-called principal eigenvector), i.e, eve; = @1.22 Loosely speaking, a node
has a high eigenvector centrality when it is linked to many other nodes, to other central nodes, or
both.

Both evc and spc are approximations, condensing the entire network matrix into one value
per node. Although evc can also be viewed as a “directed measure”, in the sense that it changes
when the network matrix is transposed, we view spc as the more natural quantity when it comes
to capturing directedness in the context of our model for the following reason. An approximation
of our equilibrium asset pricing results using evc would combine the principal eigenvectors of both
B3 and (3, hence mixing up the impact of incoming and outgoing links. To see this, let eve; denote
the eigenvector centrality of node ¢, and let evc] denote the eigenvector centrality of node i based

on the transposed matrix 4’. Defining the approximation §*** of 3 via
g .= §.diag(¢1,0,...,0)- 871
i.e., replacing all non-principal eigenvalues by 0, one can easily show that

evcpeve] ... eveyeve,
*kkok
B = ¢1-

evep eve] ... eve,eve,

spc, on the other hand, offers a straightforward interpretation of directedness, given the additive

structure of our model with mutually exciting processes.

22Further technical details about the construction of eigenvector centrality are given in Online Ap-
pendix C.6.
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Panel A: Univariate regressions on spc

Sharpe ratios

Return volatilities

Average excess returns

spc 8.1778** -4.4060*** -0.3203

[ 2.46] [-4.14] [-1.15]
const. 14.8382** 717767 1.0972%*
B [16.03] [17.44] [13.59]
R? 0.2236 0.4039 0.0162

Panel B: Bivariate regressions on spc and evc
Sharpe ratios Return volatilities Average excess returns

spc 8.1778 -4.4060** -0.3203

[ 2.83] [-4.40] [-1.42]
evc -4.0006 -3.2633** -0.7237**

[-0.57] [-2.03] [-1.96]
const. 14.8382*** 71776 1.0972**
B [17.38] [17.96] [15.57]
R? 0.1759 0.4328 0.0848

Table 1

Cross-sectional regressions on spc and evc

The table reports the results of cross-sectional regressions of Sharpe ratios, return volatilities, and
average excess returns of the 14 industry portfolios on their shock propagation capacity (spc) and
eigenvector centrality (evc). Within the portfolios, returns are value-weighted. Both network mea-
sures are obtained from Diebold and Yilmaz (2014) H-quarter generalized variance decompositions
for H = 4, applied to log industry earnings growth rates over the sample from 1966-Q2 to 2014-Q4,
i.e., 686 observations in total. spc is defined in Equation (3), evc in Equation (C.1). In bivariate
regressions, we orthogonalize evc with respect to spc. Numbers in square brackets denote t-stats
adjusted for cross-sectional heteroskedasticity. Statistical significance at the 1%, 5%, and 10% level

is indicated by ***, ** and *, respectively.
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A. Star networks: Exact formulas

1. Shock propagation capacity

Theoretically appealing special cases can be constructed by assuming sparse beta matrices, the
most prominent examples being the so-called “star networks” which we are going to analyze in
the following. These networks feature a classic core-periphery structure. They are motivated by
the theoretical analysis in Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) and illustrated
graphically in Figure A.1.

The economy here consists of n industries, i.e., there are n equity claims (“assets”). Asset
(industry) 1 is labeled “core asset” because it is linked to all other assets in the economy. Assets
2 to n are called “periphery assets” because they are linked only to the core asset, but to none of

the other periphery assets.

We distinguish two versions of such star networks which differ with respect to the direction
of the links. In the “outward star” (superscript “OS”), shocks can propagate from the core asset
to the periphery asset, but not the other way around. Vice versa, in the “inward star” (superscript
“IS”), shocks can only propagate from the periphery assets to the core asset. The two networks can

be represented using the following two beta matrices

0 0 e 0 0 5core,per e ﬁcore,per
Bper,core 0 T 0 0 0 e 0
gos = | Premeer o= DT T e
Bper,core 0 T 0 0 0 e 0

Since these matrices are sparse, we can show the basic effects of shock propagation on jump expo-

sures, local return volatilities, market prices of jump risk, and local expected excess returns.

In particular, the general formula

n
spc; = Zﬁi’j (AQ)
i=1
i#]
simplifies for the two special cases to
Spccooie = (’I’L - 1) : Bper,core Spcge% = 0 (A 3)
Spcfrgre =0 Spci)ser = Bcore,per-
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2. Market prices of jump risk

In the two stylized star networks, we can derive model predictions for market prices of risk and

jump exposures in closed form.

Proposition 1. Assume that v > 1,0 < 0, K1 = ... = K, = K <0, k1 = ... = kp = K,
0< k<1, and ky1 > ﬁ Then, in the outward and the inward star network, the market prices
of risk for jumps in the cash flows of shock-propagating assets are increasing (in absolute values)

in these assets’ spc:

d|MPJRYS

core > 0

aspccm“e
d|MPJR!S

per

dspc

per
The market prices of risk for jumps in the cash flows of non-propagating assets are independent of
the spc of any asset:

MPJRYS = 1—exp{—K}

per

MPJRE =~ = 1—exp{—yK}

core

and they are lower (in absolute terms) than the market prices of jump risk for the corresponding
shock-propagating assets:

\MPJROS| < |MPJRYS

per core

\MPJRLY | < |MPJRLS

core peri:

A proof is given in Online Appendix B.

The market prices of jump risk are in general negative: a negative cash flow shock increases
the risk of subsequent shocks to the cash flows of the other assets and to aggregate consumption
and therefore leads to an increase in the pricing kernel. By definition, the market price of jump risk
is the negative of this pricing kernel response to the jump. When we refer to the market price of
risk being increasing in spec, such a statement is meant to refer to the absolute value of the market

price of risk.

In the outward star network, the intuition behind this result is that shocks to the core asset
increase all periphery jump intensities, so these shocks are the most “systematic” in the sense that
they affect the whole economy and the distribution of future consumption growth the most. Shocks
to the periphery assets do not spill over to other assets and hence do not have an additional effect

on the wealth-consumption ratio. This can also be seen from the expressions for the market prices



of risk given above which simplify to

MPJRgﬁe 1—exp {—’y K +ky1 (0 —1) Bper spcgie}

MPJRSeSr 1—exp {—fy K +ky1 (0 —1) Beore spcgesr = 1l—exp{— K}

in the outward star network. As already noted above, k,1 > 0. Moreover, § — 1 is negative if the
representative agent has a preference for early resolution of uncertainty. Bper captures the response
of the wealth-consumption ratio to the jump intensity of one of the (assumed identical) periphery
assets. It is negative for the given parameters, since the wealth-consumption ratio is decreasing in
all jump intensities, due to the fact that higher jump intensities imply higher future consumption
risk. Altogether, shocks to the core asset have the highest (in absolute terms) market price of risk,
and this market price of risk is increasing in absolute terms (i.e., becoming more negative) in the

core asset’s spc.

In the inward star network, the analogous intuition applies, but the other way around. The

market prices of jump risk are given as

MPJRgre = 1—exp {—’yK +ky1 (0 —1) Bper spcgre} = 1l—-exp{— K}
MPIRp, = 1—exp{—vK + ko1 (0 —1) Boore 5pche, } -

Cash flow shocks in the periphery can spread to the core and this makes them more systematic,

implying a higher (i.e., more negative) market price of risk.

Altogether, market prices of jump risk in these two star networks are thus increasing in
shock propagation capacity. Finally, note that the result documented here hinges critically on the
assumption of a preference for early resolution of uncertainty. In an economy with CRRA preferences
(6 = 1), the wealth-consumption ratio does not enter the pricing kernel, state variable risk is not

priced, and the market prices of jump risk are the same for all jump processes.

3. Return volatilities

For return volatilities in the IS and OS network, we have the following result.

Proposition 2. Assume that v >1,0<0, K1 =...=K,=K<0,L1=...=L,=L <0,
Kl=...=kp =K, 0< k<1, and kcore1 > ﬁ Then in the outward and inward star networks,
conditional on the jump intensities £; and assuming that {1 = ... = £y, the local return volatilities

of shock-propagating assets are decreasing in their spc:

d|RVol9S

core < 0
8Spccore
O|RVollS |
ospc

per

4



A proof is given in Online Appendix B.

To get the intuition behind this result, note that in a pure jump model like ours, the local

return volatility of asset j, RVol;, is given as

n
> 4 JEXP? (A.4)

Jye
i=1

RVol; =

and thus depends on two components: the conditional jump intensities ¢; and the (squared) expo-
sures to jumps.! We want to focus on the exposure effect because this is an equilibrium pricing
effect that endogenously arises within the model, whereas the dynamics of jump intensities are
exogenous. Therefore the following analysis is performed conditional on the current values of the

¢; and assuming that £, = ... ={,.

As shown in Online Appendix B, the local return volatility of the core asset in the outward

star network can be written as

RVOlng«e — ecore eL+kcore,l Ccore,per Spccoosre _ 1

JEXPCOI‘e,COI‘e

It is decreasing in the core asset’s shock propagation capacity spccore- The reason is that, given
positive Kcore,1 and Ceoreper and negative L, a larger (and positive) spccoo}qe makes the exponent
less negative and thus the expression in square brackets smaller in absolute terms. The coefficient
Ceore,per measures the reaction of the price-to-cash flow ratio of the core asset to changes in the
jump intensity of one of the periphery assets. Ceore per is in general positive due to the hedging effect
described above.? When the jump intensity of one of the periphery assets increases, the core asset
becomes relatively less risky compared to the periphery, and therefore its equilibrium price-to-cash

flow ratio goes up.

Symmetrically, we find that in the inward star network the local return volatility of the
periphery asset decreases in its shock propagation capacity. For this special network structure, the

return volatility simplifies to

2
2
IS k C IS
R‘VOI%)Ser — gper eL"kaer,l Cher,core SPCper _ 1 + (TL _ 2) Eother per | € per,1 Uper,core SPCother per 1
JEXPper,per JEXPper,other per

where spcother per denotes the spc of the other periphery assets. The first square under the square

root is the dominating term, so that the result of the return volatility decreasing in spc follows

'In the remainder of this section, we suppress the time index to simplify the notation.

2A proof that Ceore,per > 0 for reasonable parameter choices is given in Online Appendix B.



from an argument analogous to the one presented for the OS case above. In particular, Cper,core is

positive in the inward star network.

To sum up, in both star networks the local return volatility of an asset is decreasing in its

own shock propagation capacity.

B. Proof of Propositions 1 and 2

The two stylized cases of the outward star and the inward star network are represented by the

sparse beta matrices

0 0 s 0 0 ﬁcore,per e Bcore,per
Bper,core 0 t 0 0 0 e 0
BO% = . . : . , B8 = . : . : - (B.1)
Bper,core 0 T 0 0 0 e 0

In the “outward star” (superscript “OS”), shocks can propagate from the core asset to the periphery
asset, but not the other way around. In the “inward star” (superscript “IS”), it is exactly the other

way around.

We obtain for the market prices of risk and jump exposures in the star networks:

MPJRSS, =1—exp {-7K +ky1 (0 — 1) Bper spc?oie}

MPIRSS  =1—exp{—yK +ku1 (0 —1) Beore spcon} = 1—exp{—yK} B2)
MPJRG,. =1—exp{—yK +ku1 (0 — 1) Bper spcoye} = 1 —exp{—7K}

MPIRE, =1—exp{—7yK +ku1 (0 — 1) Beore SPCpx }



and

JEXPg)Sre,core = exp { L + kcore,1 Ceore,per spc%sre} —1
JEXPOS . = exP { kper,1 Cper per SPCoe } — 1
JEXPOS, 0, = ’
JEXPOS . = exp {L}—1
J EXPgeSr,other per - 0
JEXPS, = apil)—1
JEXPL, core = 0
JEXPS, o = exp { kcore,1 Ceore,core SPChey } — 1
JEXPE, sor = exp { L + kper,1 Cper,core 5PCher } — 1
JEXPII)Ser,other ver = exp {k‘per,1 Chercore Spcgher per} - L

To prove the propositions, it is therefore sufficient to show that (i) in the outward star network the
oS
core?

IS
per»’

coefficients Bper, Ceore,per; and Cper per do not depend on spc (ii) in the inward star network the

coefficients Bcore; Cper,cores @and Ceore core do not depend on spc and (iii) to determine the signs

of these coeflicients.

To see (i) and (ii) for the outward star, one has to plug the sparse beta matrices given in
Equation (B.1) into the following Equations (A.4) and (A.10) from the Appendix of the main text:

0 = K/Xy_e(l_kv,l)B+l/1 [Q(Xy)_ﬂ]
0 = K'xyi+(1—0)(1—Fky1) B—(1—kin) Ci+1} [o(xys) — 1]

For the coefficients Beore and Bper in the outward star, this results in the system of equations

1
0 = _Kjakvrl Beore — 0 (1 - k;v,l) Bcore + €xp {_Ke <d} B 1> + ekv,l Bper spcg)sre} !
1
0 = —k0kys Bper — 0 (1 ky1) Bper + €xp {—K@ (w - 1)} — 1 (B.3)

Assuming that the linearization coefficient k, 1 is given exogenously and independent of spcS., the
OS

solution Bper does not depend on spcgly..

The previous assumption is justifiable, since the method
of Eraker and Shaliastovich (2008) works independent of the particular point of expansion in the
Campbell-Shiller loglinearization, and so we essentially assume the point of expansion to be held

constant throughout this section. Moreover, rearranging Equation (B.3) as

Bper =

Texp{(1-7) K} -1
0 1—]%’1 (l—li) ’



one can see that Bper < 0 for the given parameter choices v > 1,0 < 0, K < 0,0 < x < 1, and

1
kU71 > 1-k

For the inward star, we obtain

1
0 = —kOky1Beore — 0 (1 —Fky1) Beore + €xp {—K9 (1/1 — 1)} -1
1
0 = —kOky1Bper —0 (1 —ky1) Bper +exp {_KG <w - 1> + 0 kv,1 Beore SpCII)Ser} - L

Based on arguments analogous to those above we conclude that Bcgpe < 0.

For the coefficients C; ; we obtain the following set of equations in the outward star network:

0 = (_1 + kcore,l - Kvkcore,l) Ccore,core — K+ (1 - 9) (1 - kv,l + K k"u,l) Beore
+exp {kcore,l C'core,per Spcgﬁe - (1 - 0) kv,l Bper Spcgﬁe - ’YK} -1
0 = (_1 + kper,l — K kper,l) C’per,core + (1 - 0) (1 - kv,l + K/kv,l) Beore

+exp {kper,l [Cper,per /Bcore,per + (77, - 2) Cper,othcr per Bcore,per] + ﬁcore,per
— (1 —0) ky1 Bper spc?oge — 'yK} -1

0 = (_1 + kcore,l - Hkcore,l) C(core,per + (1 - 0) (1 - kv,l + kafu,l) Bper + exp {_’7 K} -1
0 = (—1 + kper,l — Hkper,l) Cper,per — K+ (1 — 9) (1 — kv,l + Hk}v’l) Bper + exp{—'y K} -1
0 = (_1 + kper,l — KR kper,l) C’per,other per + (1 - 0) (1 - kv,l + ’ikv,l) Bper + exXp {_7 K} -1

(O

core When the

which leads to the conclusion that Ceoreper; and Cperper do not depend on spc
Campbell-Shiller coefficients k;; and k, 1 are exogenous. Moreover, the third equation, reformu-

lated as

(1—0) [1+ ko1 (5 —1)] Bper +exp{—K} -1
1+ kcore,l ("f - 1)
150 [exp{—K (y— 1)} — 1] + exp{—7yK} — 1
1- kcore,l (1 - K')

Ccore,per

reveals that Croreper > 0 because 152 ~ —1 for the given preference parameters.
P 0 g p p



Similarly, for the inward star network, we have the system

(=1 + kcore,1 — K kcore,1) Ceore,core — K+ (1 —8) (1 —ky1 + K£ky1) Beore +exp{—y K} —1
0 = (=14 kper,t — Kkper,1) Cpercore + (1 = 0) (1 = ky1 + Kky1) Beore +exp{—yK} —1
(=1 + kcore,1 — K kecore,1) Ceoreper + (1 —6) (1 —ky1 + Kky1) Bper
+ exp {kcore,l Core,core Spcéser + S;DC%)SQ]r — (1 —0) ky,1 Beore spciser -7 K } -1
0 = (=14 kper,i — Kkper,1) Cperper — K+ (1 —0) (1 —ky1 4+ Kky1) Bper
+exp {kper,1 Cper,core 5PCpor + 5PCher — (1= 0) ki1 Beore spcpey — 7K} — 1
0 = (=14 kper, — K kEper,1) Cperother per + (1 —0) (1 = ky1 + K ku1) Bper
+exp {kper,1 Cper,core 5PCpor + 5PCher — (1= 0) k1 Beore spepey — 7K} — 1,

whose solutions Cper,core and Ceore,core do not depend on spcéser. Similar to the outward star, we

also see from the second equation that Cper,core > 0 since Beore < 0.

In a pure jump model like ours, the local return volatilities are given by

In the sparse star networks, this expression becomes

2
RVOIOS, = | feope |l Hheore Ceoreper spelie _ 1
JEXPcore,core
5 2
RVOILSer = Cper el thper,1 Cpercore SPeper LI+ (n—2) Lother per glpert Cpercore PCotier por — 1
JEXPper,per JEXPper,other per

From the discussion above, we know that the relevant coefficients Ceore,per in the outward star and
Cper,core 1 the inward star are both negative and independent from the spc’s, which concludes the

proof.



C. Empirical illustration

1. Data on industry earnings

In the following, we perform several illustrative exercises to present suggestive empirical evidence for
the theoretical channels outlined in Section 2 of the main paper. We start by constructing quarterly
time series of industry earnings following Irvine and Pontiff (2009). The sample comprises all firms
in the CRSP/Compustat merged (CCM) fundamentals quarterly database from 1966-Q2 to 2014-
Q4. In principle, the data is available from 1964 onwards, but before 1966-Q2 not all industries are
represented in the sample. We work with firms’ earnings per share (item EPSPXQ) and require
a firm to have at least four consecutive data entries to be included in our sample. Following the

procedure outlined in Irvine and Pontiff (2009), we winsorize the EPS data.

Based on the NAICS code dictionary from the Bureau of Economic Analysis, we sort in each
quarter firms into 15 industry portfolios as in Menzly and Ozbas (2010). Following Aobdia, Caskey,
and Ozel (2014), and Menzly and Ozbas (2010), we exclude the government sector. We multiply
firms’ earnings per share by the number of shares to obtain total earnings, sum up the total earnings
across all firms in a given industry, and divide by the number of firms in that industry to account
for variation over time. We then calculate log earnings growth rates for each industry.® We adjust
each time series for seasonality using the method proposed in Hamilton (2018).* Eventually, we
end up with a time series of 49 log earnings growth rates for each of the 14 industries, i.e., 686

quarterly observations in total.

2. Measurement of directed cash flow links

Having constructed quarterly industry earnings time series allows us to estimate the directed earn-
ings network following the procedure proposed by Diebold and Yilmaz (2014).5 The first step is to

estimate a 14-dimensional VAR(1) process based on our earnings growth time series:
214 o1 $11 ... D114 21,4-1 €1t
= S e : +

214t $14 G141 .. D144 214,41 €14t

From the coefficient matrix ¢ and the covariance matrix of the shocks €, we compute generalized

variance decompositions of quarterly earnings with a forecast horizon of H = 1,2,3,4 quarters.

3We follow Lochstoer and Tetlock (2018) and winsorize log earnings growth rates at log (0.01) when
earnings growth rates are below -0.99.

4Running a Dickey and Fuller (1979) test on each resulting time series, we can reject the null hypothesis
of a unit root at the 1% significance level.

SWe thank Francis Diebold and Kamil Yilmaz for sharing their code.
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We denote the fraction of H-quarter forecast error variance of industry #’s earnings explained by
shocks in industry j’s earnings by le] This gives us a 14 x 14 matrix (di{{j)i’jzl’m,lzl, which Diebold
and Yilmaz (2014) refer to as the connectedness table. In the following, this matrix serves as our

empirical network matrix at the cash flow level.

There is no clear guidance towards the optimal choice of the forecast horizon H. As doc-
umented by Diebold and Yilmaz (2014), a very short horizon produces noisy estimates, but the
estimates stabilize with longer horizons. Diebold and Yilmaz (2014), thus, choose H = 12 days for
their daily stock return data. We find similar, albeit weaker, effects of the forecast horizon in our

estimation and, therefore, report results for H = 1,2, 3,4 quarters in the following.

Figure C.1 presents graphical illustrations of the estimated networks, where the arrowheads
mark outgoing links. This helps to visually identify the industries with high spc in the graphs.
From the graphs, one can see the similarity of the networks for the different forecast horizons of

H=1,...,4 quarters.

From the empirical network matrix, we compute the shock propagation capacity spcf for

industry 7 and horizon H analogous to Equation (3) from the main text as

N
spcfl = ZdZHJ (C.1)
i=1
i#j
Diebold and Yilmaz (2014) call this measure total directional connectedness to others from j.

Table C.1 provides the spc’s of the 14 industries. Most importantly, one can see that there
is a significant cross-sectional dispersion in spc at all horizons, so that this variable indeed has
the potential to explain cross-sectional variation in asset pricing moments. In terms of important
industries with high values for spc, manufacturing, wholesale trade, and utilities are at the top of
the list for H = 1, and this ranking is stable across the four horizons. In contrast, cash flow shocks
to construction and agriculture, forestry, fishing, and hunting seem to be less important for the rest

of the economy.
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Figure C.1
Empirical cash flow networks for different forecast horizons H

The pictures show the empirical cash flow networks obtained from Diebold and Yilmaz (2014)
H-quarter generalized variance decompositions for H = 1,...,4, applied to quarterly log industry
earnings growth rates over the sample from 1966-Q2 to 2014-Q4, i.e., 686 observations in total.
Arrowheads mark outgoing links. The thickness of a link corresponds to the size of the respective
entry. Diagonal entries of the connectivity matrix are disregarded. The industries are listed in
Online Appendix D.
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Industry

Forecast horizon

H=1 H=2 H=3 H=14
Agriculture, forestry, fishing, hunting 0.0560 0.1012 0.1061 0.1068
Mining 0.2895 0.3147 0.3237 0.3247
Utilities 0.3637 0.4185 0.4189 0.4186
Construction 0.0599 0.1548 0.1679 0.1720
Manufacturing 0.3584 0.5740 0.6330 0.6482
Wholesale trade 0.4326 0.5272 0.5273 0.5271
Retail trade 0.0782 0.2277 0.2450 0.2497
Transportation and warehousing 0.3175 0.3679 0.3744 0.3753
Information 0.1560 0.2300 0.2517 0.2554
Finance, insurance, real estate, ... 0.0448 0.0906 0.0998 0.1027
Professional and business services 0.1584 0.2861 0.3003 0.3022
Educational services, health care, ... 0.0780 0.1384 0.1445 0.1452
Arts, entertainment, accommodation, ... 0.1473 0.1388 0.1383 0.1382
Other services 0.0980 0.1375 0.1414 0.1415
Mean 0.1884 0.2648 0.2766 0.2791
Standard deviation 0.1350 0.1573 0.1643 0.1663

Table C.1

Shock propagation capacities

The table shows the shock propagation capacity (spc) for 14 industries. spc is obtained from Diebold

and Yilmaz (2014) H-quarter generalized variance decompositions for H = 1, 2,3, 4 applied to log

industry earnings growth rates over the sample from 1966-Q2 to 2014-Q4, i.e., 686 observations in
total. spc is calculated according to Equation (C.1). Graphical representations of the networks are

shown in Figure C.1.
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3. Cross-sectional performance of shock propagation capacity

Having estimated the network of cash flow linkages, we now illustrate the performance of spc in a
cross-sectional asset pricing exercise. The data is from the CRSP securities monthly database and
covers exactly the sample used for the cash flow network estimation. We assign firms to industry

portfolios based on their NAICS code and form value-weighted industry portfolios accordingly.

For each industry portfolio, we calculate three variables over the whole sample, which serve
as dependent variables in our regressions. The average excess return of an industry portfolio is the
mean of the difference between its log return and the log three-month Treasury bill return. Return
volatilities are calculated as the standard deviations of log returns. Sharpe ratios are computed as

average excess returns divided by return volatilities. The numbers are shown in Table C.2.

The Sharpe ratio of an industry serves as a proxy for the market price of risk for cash flow
shocks of the respective industry, MPJR, because these market prices of risk are not observable
empirically. Recall from Equation (9) of the main text that the expected excess return on asset 4

is given as

n

%E [dRi] —r = > ¢; JEXP; ;MPJR,.
j=1

The i-th summand is by the far the largest on the right-hand side, since JEXP; ; is the only exposure

containing the direct cash flow effect represented by the jump size L. The expected excess return

of an asset is thus mostly driven by the response of its price and of the pricing kernel to its own

cash flow shocks. Therefore we use the Sharpe ratio of asset i as a proxy for MPJR,; and the return

volatility as a proxy for JEXP; ;.

Table C.3 reports the main results from this empirical exercise. Each of the three panels shows
four univariate cross-sectional regressions, where the explanatory variables are the industry shock
propagation capacities, determined using the empirical procedure outlined above, with forecast
horizons of H = 1,2,3,4 quarters. The dependent variables are return volatilities, Sharpe ratios,

and average excess returns.6

First, the coeflicients in the Sharpe ratio regressions are positive and significant for H = 2, 3,4,
and the R%’s are large. This is also in line with Proposition 1, that shocks to the cash flows of high
spc industries carry a large market price of risk, which manifests itself in high Sharpe ratios for

these industries.

Second, the coefficients in the return volatility regressions are all negative and significant at
the 1% level, and the adjusted R?’s are high for all forecasting horizons. This negative connection
is in line with Proposition 2 which states that high spc assets have smaller jump exposures that

translate into lower return volatilities.

6 Although one of the three regressions is redundant, we report all three for the sake of completeness.
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Industry Sharpe ratio Return Average
volatility excess return

Agriculture, forestry, fishing, hunting 0.1609 0.0635 0.0102
Mining 0.1351 0.0665 0.0090
Utilities 0.1459 0.0409 0.0060
Construction 0.1559 0.0773 0.0121
Manufacturing 0.2236 0.0470 0.0105
Wholesale trade 0.2070 0.0509 0.0105
Retail trade 0.1853 0.0557 0.0103
Transportation and warehousing 0.1784 0.0565 0.0101
Information 0.1888 0.0507 0.0096
Finance, insurance, real estate, ... 0.1699 0.0557 0.0095
Professional and business services 0.1563 0.0546 0.0085
Educational services, health care, ... 0.1693 0.0765 0.0130
Arts, entertainment, accomodation,. . . 0.1842 0.0679 0.0125
Other services 0.1362 0.0691 0.0094
Table C.2

Descriptive statistics for industry portfolio returns

The table presents descriptive statistics for the returns of 14 value-weighted industry portfolios. The
average excess return of an industry portfolio is the mean of the difference between its log return
and the log three-month Treasury bill return. Return volatilities are calculated as the standard
deviations of log returns. Sharpe ratios are computed as average excess returns divided by return
volatilities. The data is from the CRSP securities monthly database and covers the sample from
April 1966 to December 2014.
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const. H=1 H=2 H=3 H=14 R2
Sharpe ratios

15.9158*** 6.3940 0.0404
[20.46] [ 1.24]

14.9951*** 8.0267** 0.1811
[15.78] [ 2.10]

14.8668*** 8.1489** 0.2143
[15.91] [ 2.37]

14.8382*** 8.1778** 0.2236
[16.03] [ 2.46]

Return volatilities
6.8792*** -4.9428*** 0.3208
[16.73] [-3.16]
7.1838*** -4.6676*** 0.4057
[16.87] [-4.05]
7.1831*** -4.4660*** 0.4055
[17.30] [-4.13]
T7.1776%** -4.4060***  0.4039
[17.44] [-4.14]
Average excess returns
1.0999*** -0.4888 0.0695
[16.06] [-1.38]
1.1052%* -0.3677 0.0340
[13.64] [-1.22]
1.0994*** -0.3311 0.0206
[13.59] [-1.17]
1.0972%** -0.3203 0.0162
[13.59] [-1.15]
Table C.3

The table reports the results of cross-sectional regressions of Sharpe ratios, return volatilities, and

Cross-sectional regressions on spc

average excess returns of the 14 industry portfolios on their shock propagation capacity (spc). Re-

turns within a portfolio are value-weighted. To obtain spec, we perform Diebold and Yilmaz (2014)

H-quarter generalized variance decompositions for H = 1, 2, 3,4 and calculate spc as given in Equa-

tion (C.1). Numbers in square brackets denote t-stats adjusted for cross-sectional heteroskedasticity.

Statistical significance at the 1%, 5%, and 10% level is indicated by ***, ** and *, respectively.
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Third, the coefficients in the average excess return regressions are insignificant for all hori-
zons. These results are also in line with our theoretical findings. The effects of spc on the market
price of jump risk and on price exposures have opposite signs, so that the overall effect of spc on
expected excess returns cannot be uniquely determined in general within the model. Hence, the
role of directedness in equilibrium can only be assessed appropriately when the two opposing effects

described above are disentangled.

Finally, the coefficients in the Sharpe ratio and return volatility regressions are not only
statistically, but also economically significant. For H = 2, the standard deviation of spc is around
0.16. Thus, with a coefficient for spc in the Sharpe ratio regression of around 8.03, a one-standard-
deviation difference in spc leads to a difference in Sharpe ratios of roughly 8.03 - 0.16 =~ 1.27
percentage points monthly. Similarly, a one-standard-deviation difference in spc gives rise to a

difference in return volatilities of about —4.67 - 0.16 &= —0.74 percentage points per month.

4. Empirical spc versus model-generated spc

The empirics above rely on generalized variance decompositions of cash flows to estimate the
structure of the underlying network, whereas the model features connectivity in a network at the
jump intensity level. We now show that the connectivity and directedness information from the
empirically estimated cash flow network is indeed a close representation of the underlying intensity

network.

To this end, we perform the following simulation exercise for each forecast horizon H =
1,2,3,4. We plug the empirically estimated connectivity matrix (for the cash flows) as the beta
matrix (for the jump intensities) into our model which we then multiply with % to make sure that
the stationarity condition (A.7) from the Appendix of the main text holds. The remaining model
parameters are taken from Table C.4. Then we simulate 10,000 years of cash flows with monthly
increments and run the procedure suggested by Diebold and Yilmaz (2014) on simulated log cash
flow growth rates, exactly as we do with the empirical data, resulting in an estimate for the network
matrix based on simulated data cash flows. From this, we compute the spc values for the different
industries and compare them to the corresponding values based on the empirical network matrix

that we had plugged into the model initially.

Table C.5 presents correlations between the two spc vectors. One can see that the two network
matrices are very similar with respect to the spc values they generate, with correlations of 0.75 or
higher. Furthermore, it is especially relevant in the context of our empirical analysis that sorting
industries on spc delivers roughly the same ordering for cash flow-based and intensity-based network

matrices.
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Investors

Relative risk aversion y 10
Intertemporal elasticity of substitution (0 1.5
Subjective discount rate o 0.02
Aggregate consumption

Expected growth rate of log aggregate consumption ! 0.02
Jump size of log aggregate consumption Ki=...=Ky -0.004
Industry cash flows

Expected growth rates of log cash flows 1= ... = 14 0.02
Jump sizes of log cash flows Li=...=1Ly -0.04
Stochastic jump intensities

Mean reversion speeds K1 =...= K 0.85
Mean reversion levels bp=...=1l 0.05

Table C.4
Model Parameters

The table reports the parametrization of our model. The beta matrix is determined empirically
using the approach described in Section C.2 of the Online Appendix.

5. Regressions in model-generated data

In Section 4 of the Online Appendix, we show that applying the Diebold and Yilmaz (2014) estima-
tion method to simulated data, preserves the ordering of industries with respect to spc. As a final
step and to further corroborate that the empirical procedure is in line with the intuition behind
the theoretical model, we now analyze whether the regression results from Section 3 also carry over

to model-generated data.

We start from the simulated path for H = 3 over a period of 10,000 years with monthly
increments from the previous section.” Using these 14 industry cash flow time series, we compute
spe by applying the Diebold and Yilmaz (2014) methodology exactly as in the data. Again the
forecast horizons are H = 1,2, 3,4 quarters. Unconditional Sharpe ratios, return volatilities, and
average excess returns are computed from the simulated monthly return time series exactly like
their empirical counterparts in Section 3 of the Online Appendix. Table C.6 reports these results.
As one can see, the analyses based on simulated and empirical data produce qualitatively similar

results for Sharpe ratios (positive coefficients) and for return volatilities (negative coefficients for

spe).

"For the sake of brevity, we report the results for this sample path only. The results using the paths for
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Forecast horizon

correlation 0.85 0.81 0.87 0.66
rank correlation 0.82 0.85 0.90 0.75
Table C.5

Empirical spc versus model-generated spc

The table reports correlations and rank correlations between empirically estimated and model-
generated shock propagation capacities. The model-generated values are obtained from simulated
data using the empirically estimated network matrix as an input. The procedure is described in
detail in Section C.4 of the Online Appendix. We calculate spc as given in Equation (C.1).

The coeflicients for all regressions are much larger in Table C.6 than in Table C.3. The reason
is that the values for spc are smaller in model-generated than in empirical data. The diagonal entries
of the beta matrix are by definition not included when we compute spc according to Equation (3)
from the main text. So a comparably smaller value for spc in the model-generated data shows that
self excitation, represented by the diagonal elements of the beta matrix, is more pronounced in
model-generated than in empirical data. In the real world, shocks are also spread via potentially
diffusive channels (which are not present in our model for the sake of parsimony) and this can
increase the relative size of the shocks passed on to other industries, making the diagonal elements

of the empirical network matrix smaller and the off-diagonal elements, and thus also spc, larger.

With the given parameters, the model produces only weakly significant coefficients in the
regressions for unconditional average excess returns for H = 2, 3,4, whereas in our empirical analysis
we basically found no impact of spc on risk premia. However, given our discussion concerning the
two opposing directions in which spc impacts exposures (negatively) and market prices of risk
(positively) in the model, the results for average excess returns in Table C.6 could simply mean
that the positive effect of spc on the market prices of risk weakly dominates in the simulated

economy, whereas the two effects more or less seem to offset each other in the empirical data.

In summary, the analysis generates results which are overall in line with our results from
Propositions 1 and 2. Hardly surprising, however, our very stylized model does not match the
unconditional volatility of the U.S. stock market (reflecting the well-documented excess volatility
puzzle), as indicated by the low values for the constants in the return volatility regressions in
Table C.6. In principle, it would be possible to include additional features, but this would unnec-
essarily complicate the solution of the model and shift the focus away from the clear theoretical

results derived above.®

H =1,2,4 are qualitatively similar.

80ne way to generate stock return volatilities in the model that are closer to their empirical counterparts

19



const. H=1 H=2 H=3 H=14 R?
Unconditional Sharpe ratios
0.0026*** 4.9670 -0.0705
[ 1.45] [ 0.45]
0.0010*** 6.6106** 0.0522
[ 0.73] [ 2.97]
0.0010*** 6.6073** 0.0527
[ 0.72] [ 2.98]
0.0010** 6.6073**  0.0527
[0.72] [ 2.98]
Unconditional return volatilities
0.9091**  -904.7605*** 0.2432
[17.98] [-2.84]
0.9629** -533.6300*** 0.5922
[25.64] [-4.96]
0.9631** -532.1669*** 0.5917
[25.59] [-4.95]
0.9631** -532.1604**  0.5917
[25.59] [-4.95]
Unconditional average excess returns
0.0023*** 0.7408 -0.0828
[ 1.68] [ 0.09]
0.0012** 3.2697* -0.0183
[ 1.14] [ 1.78]
0.0012*** 3.2711* -0.0179
[ 1.13] [ 1.78]
0.0012** 3.2712*  -0.0179
[ 1.13] [ 1.78]
Table C.6

Cross-sectional regressions on spc in model-generated data

The table reports the results from cross-sectional regressions of model-generated Sharpe ratios,

return volatilities, and average excess returns of 14 assets on their shock propagation capacity
(spc). As beta matrix, we use the empirical network determined in Online Appendix C.2 for a
forecast horizon of H = 3 quarters. The remaining parameters are given in Table C.4. Given the

model solution, we run a Monte Carlo simulation over 10,000 years with monthly time increments.

From the simulated data, we compute Sharpe ratios, return volatilities, and average excess returns.

To obtain spe, we apply Diebold and Yilmaz (2014) H-quarter generalized variance decompositions
to simulated log cash flow growth rates for H = 1,2,3,4 and calculate spc as in Equation (C.1).
Statistical significance at the 1%, 5%, and 10% level is indicated by ***, ** and *, respectively.
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6. Eigenvector centrality

We start by providing some technical details on eigenvector centrality in the context of our model.
First, we derive the eigenvector centralities from the empirical network matrix with the diagonal
elements set to zero. The reason is that the entries of the network matrix resulting from the Diebold
and Yilmaz (2014) generalized variance decomposition method represent percentage shares, so that
the row sums are all equal to 1. The principal eigenvalue of such a matrix is equal to 1, and the
associated eigenvector is a (multiple of a) vector of ones. Hence all the nodes in the network would

be assigned the same eigenvector centrality if we used the full matrix with diagonal elements.

Second, even with diagonal elements set to zero, evc is well-defined. According to the Perron-
Frobenius theorem, to guarantee that there exists a positive principal eigenvalue with an associated
positive principal eigenvector, the matrix has to be positive, i.e., has to have only positive elements.
An extension of the Perron-Frobenius Theorem states that any nonnegative matrix (i.e., a matrix
with all entries > 0) has a positive principal eigenvalue and a positive principal eigenvector if it
is an irreducible matrix. A matrix is called irreducible if it cannot be rearranged as a block upper
triangular matrix by permutations of rows and columns. In network terms, this means that the
network must be strongly connected, i.e., every node is reachable from every other node. Since our
empirical approach yields such an irreducible network matrix with only positive entries (except for
the diagonal entries which we set to 0), the extended Perron-Frobenius theorem applies, and evc is
well-defined.

Table C.7 reports the values of evc for the 14 industries. The cross-sectional dispersion in evc
is similar to spc. Tables C.9, C.8, and C.10 present the results of regressions analogous to those
shown in Table C.3, but now with evc as additional regressor. For the bivariate regressions, we
orthogonalize eve with respect to spc to quantify the additional explanatory power of this measure

beyond spc.?

The new regressions yield several interesting findings. The univariate regressions for Sharpe
ratios in Table C.8 show that evc has no explanatory power, while spc remains robustly significant
across all horizons. In the return volatility regressions in Table C.9, evc can explain the cross-section
of return volatilities for industry portfolios. When combined with spc, however, the orthogonalized
version of ewvc is insignificant for H = 1, but it seems to have explanatory power beyond spc for
H = 2,3,4. In the bivariate regressions, the coefficient for spc is significant for all horizons. Finally,
in the regressions for average excess returns in Table C.10, evc yields negative and significant
coefficients at the 10% level, while spc is not significant both in the univariate and in the bivariate

regressions. Overall, we conclude that our theoretically motivated measure of directedness spc

would be to introduce persistent diffusion processes representing, e.g., stochastic volatility of consumption
growth.

9In Section C.7 of the Online Appendix, we also compare spc to a symmetrified version of eigenvector
centrality that has been proposed in the literature recently.

21



indeed contains additional information above and beyond the information captured by centrality

measures like eve.
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Industry

Forecast horizon

H=1 H=2 H=3 H =
Agriculture, forestry, fishing, hunting 0.0581 0.0689 0.0707 0.0713
Mining 0.2680 0.2869 0.2877 0.2870
Utilities 0.4577 0.3808 0.3773 0.3769
Construction 0.0847 0.0888 0.0928 0.0938
Manufacturing 0.4083 0.3425 0.3311 0.3297
Wholesale trade 0.4859 0.4038 0.4089 0.4097
Retail trade 0.0774 0.1680 0.1688 0.1687
Transportation and warehousing 0.3575 0.4039 0.3989 0.3981
Information 0.2623 0.4355 0.4365 0.4366
Finance, insurance, real estate, ... 0.0415 0.0629 0.0652 0.0655
Professional and business services 0.1878 0.1950 0.2102 0.2126
Educational services, health care, ... 0.0757 0.0802 0.0788 0.0784
Arts, entertainment, accommodation, . .. 0.1583 0.1341 0.1316 0.1310
Other services 0.1870 0.1796 0.1852 0.1863
Mean 0.2222 0.2308 0.2317 0.2318
Standard deviation 0.1542 0.1399 0.1382 0.1380
Table C.7

Eigenvector centrality

The table reports eigenvector centrality (evc) for the 14 industries in our sample. The network

measure is obtained from Diebold and Yilmaz (2014) H-quarter generalized variance decompositions

for H = 1,2,3,4 applied to log industry earnings growth rates over the sample from 1966-Q2 to

2014-Q4, i.e., 686 observations in total. evc is calculated according to Equation (C.1) from the

Appendix of the main paper. Graphical representations of the networks are shown in Figure C.1.
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7. Symmetrified eigenvector centrality

In this section, we compare our theoretically motivated measure spc to a symmetrified version

of eigenvector centrality proposed by Ahern (2013), which we label symevc. To compute it in
the context of our model, we construct a new network matrix %™ by setting Bf?m = jylm =

max{f; ;, Bj:}. From this new matrix, obviously representing an undirected network, we then again

compute the eigenvector centralities of the n nodes.

Ahern (2013) works with data from the BEA input-output tables, and these tables contain
many zero entries. Symmetrifying these sparse network matrices makes them irreducible so that the
extended Perron-Frobenius theorem applies, and symewvc is well-defined. In our empirical procedure,
we do not face this irreducibility problem because our empirical network matrix does not contain
zeros, but we document the results for symeuvc to link our paper to the existing literature. For the
same reason, we compute symevc based on the network matrix with diagonal entries, in particular
since the problem pointed out above (that the row sums are all equal to 1) does not apply to the

symmetrified matrix.

Table C.11 reports the values of symevc for the 14 industries. The cross-sectional dispersion
in symevc is smaller relative to evc and spc. Tables C.13, C.12, and C.14 then present the results of
regressions analogous to those shown in Table C.3, but now with symevc as additional regressors.
For the bivariate regressions, we orthogonalize symevc with respect to spc to quantify the additional

explanatory power of these measures beyond spc.

The univariate regressions for return volatilities in Table C.13 show that symeuvc yields neg-
ative and significant coefficients for all horizons, albeit the results are weaker than for evc. When
combined with spc, however, the orthogonalized version of symevc does not have additional ex-
planatory power beyond spc, which itself remains significant for all horizons. In the Sharpe ratio
regressions (Table C.12), symevc is significant as a single regressor (except for H = 1) but the
parts of this measure not already captured by spc fail to deliver additional explanatory power. At
the same time, spc remains robustly significant across all horizons. Finally, in the regressions for
average excess returns (Table C.14), symevc has no explanatory power. Both in the univariate and

in the bivariate regressions, spc is not significant.
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Industry

Forecast horizon

H=1 H=2 H=3 H =
Agriculture, forestry, fishing, hunting 0.2183 0.1807 0.1796 0.1790
Mining 0.2778 0.2631 0.2645 0.2642
Utilities 0.3191 0.2995 0.2874 0.2850
Construction 0.2354 0.2502 0.2525 0.2529
Manufacturing 0.2989 0.3752 0.3999 0.4056
Wholesale trade 0.3264 0.3099 0.3006 0.2991
Retail trade 0.2299 0.2585 0.2633 0.2651
Transportation and warehousing 0.2876 0.3006 0.3014 0.3019
Information 0.2813 0.2777 0.2814 0.2821
Finance, insurance, real estate, ... 0.2068 0.1713 0.1753 0.1767
Professional and business services 0.2642 0.3058 0.2976 0.2944
Educational services, health care, ... 0.2307 0.2293 0.2200 0.2178
Arts, entertainment, accommodation, . .. 0.2562 0.2063 0.2024 0.2011
Other services 0.2755 0.2379 0.2305 0.2285
Mean 0.2649 0.2619 0.2612 0.2610
Standard deviation 0.0370 0.0554 0.0589 0.0599
Table C.11

Symmetrified eigenvector centrality

The table reports symmetrified eigenvector centrality (symevc) for the 14 industries in our sample.

The network measure is obtained from Diebold and Yilmaz (2014) H-quarter generalized variance

decompositions for H = 1,2, 3, 4 applied to log industry earnings growth rates over the sample from
1966-Q2 to 2014-Q4, i.e., 686 observations in total. symevc is calculated as described in Section C.7

of the Online Appendix.

28



‘Aoaroadsar ‘, pue ‘¢ AQ POIRIIPUL ST [0A9] % (0T PUR ‘94G ‘04T 9U) 18 90URDYIUSIS [RI1ISIIRIG
"A31011SEPOSOI0)OY [RUOIJIS-SSOIO 10] PoIsnipe sje)s-7 9jouop sjoxoriq oIenbs Ul soquuny ods 03 100dsol Ypm 2aowfis oZIeuoSoyI0
oM ‘SUOISSaI8aI ojeLIRAIq UT “(T°)) Uorenbs ur se ods ‘Xipuaddy our[u() oY) JO J°0) UOIJIAS Ul POQLIISOP Sk PIJR[NO[ed ST 0adwifis [ejo)
Ul SUOIJRAIOSO 989 0T ‘FO-FI0Z 01 gD-9961 wol o[dures oY) IoA0 sojel [yjmoid sgurures Arjsnput Sof 0y pordde ‘((oued JYSLI 10mO]
0} o1 IToddn wor) §¢‘g‘T = H 10J suorisoduwiooop oduRLIRA POZI[RIoUad Iojrenb-f7 (F1(g) ZRW[IA pUR P[OYLI(] WOI} paulejqo ore
SOINSeaU {I0M)OU [[10¢] ‘PAIYSIoM-dT[RA IR SWINIAI ‘so1[0J110d 81} U AN *(2a2wfis) £)[RITULD 107109AUSSIS PAYLIjoWIIAS puR (2ds) Ajroeded
uorjyesedord yooys Iy} uo sorojirod A1gsnpur 1 oY) Jo soryet odieyg oYj JO SUOISSOIS0I [RUOIJI9S-SSOI0 WO SHNSAI o) sp10dod o[qe) oy J,

onowfis pue ods uo sorjed adreyg JO SUOISSAI391 [RUOI}IIS-SSOI))

¢I'D 2IqEL
170 Lve ] [68°G1] 900 ] 8¢°C ] e8°¢T]
6€ST°0 ¥8¢6°¢C «=+SLLT'S wxG3ER VT 1EVT0 0vLET «=O8VT'8 #x 3998 VT
B4 767 | [12°c ] aL7 ]
V.L8T°0 #VEEE 1T 964G TT 91LT°0 01460 T¢C #x9CCI 11T
2 20wifis ods *1SU0D o 200w ods “1SU0D
=H =H
[62°0-] [11°¢ | [ST°9T] [26°0-] [ceT ] 77 e
00TT0 veaL G- «L9C0"8 wx [G66 7T 00100 R9CT"LE- 0v6¢9 #x8GT16°GT
L 1] 127 ] 98°0 ] [60°¢ ]
0¢IT0 «LVLG 61 wex L V66 TT €1€0°0- €ceral wxLCTTET
2 20wifis ods “1SU0D 2 20w ods “1SU0D
=H I1=H

29



‘Aoaroadsar ‘, pue ‘¢ A POIRIIPUL ST [0A9] %] PUR ‘94G ‘04T 9U) 18 90URDYIUSIS [RI1ISIIRIG
"A310T1SEPOSOI0)0Y [RUOIJIVS-SSOID 0] PRISTLIpe speis-7 9j0Uop sjoxoriq orenbs ur stoquny -ods 03 100dsol Yim 222wifls 9ZIeRUOSOYLIO om
‘SuorssaI8a1 ojeLIeAlq Ul *(1°)) uoryenby ut se ods ‘Xipuaddy ouIlu() 9y} Jo L) UOI}AG Ul POGLIISIP Se PaIRNO[RD ST 2aawifis [ej0) Ul
SUOT)RAINSCO 99 0T ‘FO-FT10Z 01 ¢1)-9961 woly ojdues o1} IoA0 SRl IMOI3 sdurures Arsnput o[ 03 parjdde ‘((oued JYSLI 10MO] 0} 1J9]
1oddn woxy) §‘¢‘z ‘T = H I10J suonisoduwiosop odueLIeA Pozi[elousd Iojrenb-f7 (F1(0g) ZewW [l pue P[OQol(] WOIJ Poule)qo oIe SOINSLIUl
JI0M)9U [10g] PaISIom-onyea aIe swINal ‘sorfojprod o) UIyIAy *(Paawifis) AY[RINUED 10109AURSI8 PayLIjewIuAs pue (ods) Ajoeded uoryesd
-edoad ooys 1) uo sorjoprod AIpsnpur T oYl JO SOII)R[OA WINSI 9} JO SUOISSOIIAI [RUOI}I9S-SSOIO WOIJ SINSAI o1} s)10dol o[qe) oy T,

onpwfis pue 2ds UO SOII[IFR[OA UINJOI JO SUOISS9IZDI [RUOI}IIS-SSOI))

¢ 2lqelL
7270 ] 76 7] [0T°61] [€270] [067] [26°81]
16,0 8G6.L°9 w0007 T~ wOLLT L GGLE0 ¢169'9 w0997 T~ 4k [EST'A
[ ¢-] [€2°6] [ze¢] [7¢°6 ]
2 20wifis ods *1SU0D o 200w ods “1SU0D
(6670 ] 6z 7] [12'81] [71°0-] [F1°¢] [67°91]
[68°C] 062 ] [16°2] [FG¢]
2 20wifis ods “1SU0D 2 20w ods “1SU0D
¢=H IT=H

30



‘Aoaroadsar ‘, pue ‘¢ A POIRIIPUL ST [0A9] %] PUR ‘94G ‘04T 9U) 18 90URDYIUSIS [RI1ISIIRIG
"A310T1SEPOSOI0)0Y [RUOIJIVS-SSOID 0] PRISTLIpe speis-7 9j0Uop sjoxoriq orenbs ur stoquny -ods 03 100dsol Yim 222wifls 9ZIeRUOSOYLIO om
‘SuOISSaI8a1 9jeLIRAIq UT *(T°))) woryenbyy ut se ods ‘xtpuaddy aur[u() oy Jo /) UWOIID9G Ul PICLIISOP Se PaIRNORD ST 2a2wfis "Te)0) UT SUOT)
“RAIDSAO 989 T ‘FO-FT0Z 03 Z1)-9961 Wwog ojdures oY) I9A0 sojel 3M0I3 surures Ansnpur 301 03 parjdde ‘([oued jySLI 1omof 09 339 Toddn
woIj) § ‘¢ ‘g ‘T = H 10J suorsoduwiodop 9duRLIeA PozZI[elouad Iojrenb-f7 (FT107) ZewW[lf pue P[ogal(] WOIJ PIUIR)(O oI SOINSeIUl YI10M)OU
[1og "pajySem-anfea are sumjal ‘sorjojriod oy U “(2a2wfis) A)[RIjued 10100AURSI0 payLIjewuis pue (ods) Ajoedes uoryesedord
YOOUSs 10y} uo sorjojrod AIISNpul FT o) JO SWINJOI SS90X0 9SRIOAR O} JO SUOISSOIFOI [RUOII0S-SSOID WOIJ s)nsal o) spioder o[qe) oy J,

2nowfis pue 2ds U0 SUINISI SS90XS 9FRIOAR JO SUOISSAIS] [RUOI)IIS-SSOI))

4NO R CLAR
[7e0 ] [61°T-] [76°¢1] [67°0 ] [02°T-] [26°¢1]
02500~ 9.66°0 €020~ «aCLOO'T 9150°0- LL880 TTEE0- «P660°T
20T 8279 ] 90°T-] 699 ]
18¢0°0- 6¢99°0- #xS08T T ¢6c00- €e0L0- wxGTOT T
2 20wifis ods *1SU0D o 200w ods “1SU0D
V=H =H
[61°0] €T 1] 9L 7€T] g1 [17°1-] [09°¢T]
8150°0- 760€°0 2L9€°0-  wsGSO0T'T LEVO0 L86G°¢C- 8870~ «6660"T
611 [1€9 ] l0g°T-] (S
LT00°0 €888°0- wxVOVC T 90¢1°0 7650°¢- wx 669G T
2 20wifis ods “1SU0D 2 20w ods “1SU0D
H =H

31



D. Industries

We use the industry codes in the Industry Economic Accounts provided by the Bureau of Economic
Analysis (BEA) at the sector level.!? These are based on the North American Industry Classification
System (NAICS) code structure and contain 15 groups of industries. Following Menzly and Ozbas
(2010) and Aobdia, Caskey, and Ozel (2014), we exclude the government sector. We refer to the 14

industries in our network graphs in Figure C.1 as:

1. Ag: Agriculture, forestry, fishing, and hunting;
2. Mi: Mining;
3. Ut: Utilities;
4. Co: Construction;
5. Ma: Manufacturing;
6. Wh: Wholesale trade;
7. Re: Retail trade;
8. Tr: Transportation and warehousing;
9. In: Information;
10. Fi: Finance, insurance, real estate, rental, and leasing;
11. Pr: Professional and business services;
12. Ed: Educational services, health care, and social assistance;
13. Ar: Arts, entertainment, recreation, accommodation, and food services;

14. Ot: Other services, except government.

10 Available at the BEA homepage (https://bea.gov/industry/io_annual.htm).
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