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Non-Technical Summary 

 
The notion of an economy as a network of more or less tightly linked units has received 
considerable attention in the finance and economics literature. Links in a network usually have a 
direction, i.e., it makes a difference whether a link goes from node i to node j or the other way 
around. In this paper, we study whether directedness in a network at the cash flow level has 
implications for asset prices. To this end, we introduce a general equilibrium asset pricing model, 
in which negative cash flow shocks in some industries can increase the probability of subsequent 
cash flow shocks in other industries. 
 
We introduce the variable ''shock propagation capacity'' (spc) to measure directedness. Industries 
with a high spc are by definition those industries whose shocks substantially increase the risk of 
subsequent shocks throughout the economy. Based on a series expansion of the closed-form 
solution of our model, we analyze the impact of spc on the main equilibrium asset pricing 
quantities. Specifically, we prove the following two cross-sectional statements: (i) Cash flow 
shocks in industries with high spc command a high market price of risk. (ii) The response of an 
industry's price to its own cash flow shocks is less pronounced for industries with higher spc. 
Importantly, however, when it comes to expected excess returns, these two effects work in 
opposite directions, so that the overall impact of spc on risk premia depends on the tradeoff 
between them. To illustrate our theoretical findings, we estimate an empirical network from 
industry cash flows and find support for these predictions. 
 
The innovative combination of self and mutually exciting jump processes with recursive 
preferences allows for the integration of directed networks into a tractable equilibrium asset pricing 
model. Cash flow shocks propagate with a time lag, but, of course, equilibrium prices react 
immediately to any shock in the economy since markets are efficient. It is this instantaneous 
reaction of prices to cash flow shocks propagating slowly over time that is at the heart of our 
equilibrium model. Our results indicate that it is necessary to decompose expected returns into 
their constituents in order to understand the implications of directed cash flow shock propagation. 
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VfS 2015, Finance Down Under 2016, VHB 2016, Financial Econometrics and Empirical Asset Pricing Con-
ference 2016, Young Scholars Nordic Finance Workshop, 4th Economic Networks and Finance Conference,
SFS Cavalcade North America 2017, WFA 2017, EFA 2017, and DGF 2017 for their comments and sugges-
tions. Special thanks go to Hengjie Ai (Cavalcade discussant), Nina Boyarchenko (EFA discussant), Francis
Diebold, Paul Ehling, Adriana Grasso, Bernard Herskovic (WFA discussant), Christian Heyerdahl-Larsen
(ENF discussant), Valentina Milano, Øyvind Norli, Loriana Pelizzon, Alireza Tahbaz-Salehi, Amir Yaron,
Kailin Zeng, and Qi Zeng (FDU discussant). We thank Francis Diebold and Kamil Yilmaz for providing
us with the MATLAB code for their 2014 Journal of Econometrics paper. A separate Online Appendix to
this paper is available under http://home.bi.no/patrick.konermann. We gratefully acknowledge research and
financial support from the Research Center SAFE, funded by the State of Hessen initiative for research
LOEWE. This work represents the authors’ personal opinions and does not necessarily reflect the views of
the Deutsche Bundesbank or its staff.



 Electronic copy available at: https://ssrn.com/abstract=2521434 

The notion of an economy as a network of more or less tightly linked units has received

considerable attention in the finance and economics literature. Links in a network usually

have a direction, i.e., it makes a difference whether a link goes from node i to node j

or the other way around. In this paper, we document that directedness in a network at

the cash flow level is of first-order importance for asset prices. We propose an equilibrium

asset pricing model, in which negative cash flow shocks in some industries can increase

the probability of subsequent cash flow shocks in other industries.1 The direction and the

magnitude of this “timing of shocks” characterize the network in our model and we introduce

the variable “shock propagation capacity” (spc) that measures this directedness. Industries

with a high spc are by definition those industries whose shocks substantially increase the risk

of subsequent shocks throughout the economy. Based on a series expansion of the closed-form

solution of our model, we analyze the impact of spc on the main equilibrium asset pricing

quantities. Specifically, we prove the following two cross-sectional statements: (i) Cash flow

shocks in industries with high spc command a high market price of risk. (ii) The response of

an industry’s price to its own cash flow shocks is less pronounced for industries with higher

spc. Finally, when it comes to expected excess returns, these two effects work in opposite

directions, so that the overall impact of spc on risk premia depends on the tradeoff between

them.

The intuition behind statement (i) is as follows. High spc industries have more links

or stronger links to other industries, relative to their low spc counterparts. Hence, shocks

originating from a high spc industry have a more pronounced impact on the rest of the

economy. They increase the aggregate risk of subsequent shocks by a larger amount, hence

they are more systematic and carry a higher market price of risk.

Statement (ii) builds on the general intuition that price-to-cash flow ratios throughout

the economy decrease in response to any cash flow shock that increases the aggregate risk.

However, we document that industry i’s price reaction to a shock to industry j’s cash flow is

the result of a tradeoff between two opposing forces: (1) the direct spillover of shocks from

j to i causes a price decline reflecting that the risk of subsequent shocks in industry i’s cash

flows increased after the initial shock to industry j, and (2) an equilibrium hedge effect.

The more shocks to industry j spill over to other industries k 6= i, the more “attractive”

(in relative terms) will be industry i after the initial shock to j. This latter effect is always

positive, irrespective of the representative investor’s preference parameters, and becomes

more pronounced, the larger the spc of asset j. In particular, if a shock to a high spc

industry increases the probability of subsequent shocks only in other, low spc industries,

1We will use the term “industry” to refer to a node in the network throughout the paper. Of course,
nodes can also represent individual firms, countries, or any other economic unit.
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the equity of the “originating” industry itself serves as a hedging device against the risk of

further propagation of cash flow shocks throughout the economy. The positive price-to-cash

flow ratio reaction due to the hedge effect (2) dampens the price decline due to the direct

effect (1). In particular when it comes to shocks in their own cash flows, high spc industries

thus have a less negative price reaction than their low spc counterparts.

Our stylized consumption-based equilibrium asset pricing model features an arbitrary

number of industries whose cash flows are linked via self and mutually exciting jump pro-

cesses, and a representative investor with recursive preferences. An initial negative cash flow

shock of industry i increases the probability of future cash flow shocks to connected industries

j 6= i (and potentially also to i itself), but it is unknown when (and if at all) these shocks

will materialize. The network thus manifests itself only indirectly via the dynamics of jump

intensities as state variables, but not directly through contemporaneous shocks to the levels

of several cash flows. Aggregate consumption is driven by all individual jumps, but a given

jump affects the cash flow of only one industry at a time. The investor’s preference for early

resolution of uncertainty, i.e., the fact that she cares about the risk associated with future

values of the state variables, implies that the price-to-cash flow ratios of all assets will react

to a jump in any individual cash flow, and it is the structure of the network which determines

the sign and the magnitude of these reactions.

We choose this model for the following three reasons. First, mutually exciting processes

naturally feature directed links, with a shock going from i to j, but not necessarily vice versa.

Second, the model belongs to the exponentially affine class for which there is a well-developed

solution theory, and thus it remains tractable with at least semi-closed form expressions for

all equilibrium quantities. A series expansion allows us to rewrite the market prices of jump

risk and jump exposures as functions of spc for arbitrary directed networks. Third, the crucial

model feature that cash flow shocks to one node in the network affect other nodes only with a

certain time lag has been documented empirically. In a recent paper, Carvalho, Nirei, Saito,

and Tahbaz-Salehi (2016) provide rich empirical evidence for such a delayed propagation

of cash flow shocks at the firm level in a natural experiment setting around the nuclear

incident of Fukushima in 2011. They summarize the intuition behind their result as follows:

“When faced with a supply-chain disruption, individual firms are unable to find suitable

alternatives in order to completely insulate themselves from the shock (at least in the short

run). This is consistent with an emerging literature [. . . ] that emphasizes the importance of

search frictions and relation-specific investments along supply chains.” (p.34). However, even

though the cash flow shocks propagate with a time lag, equilibrium prices react immediately

to any shock in the economy since markets are efficient. It is precisely this instantaneous

reaction of prices to cash flow shocks propagating slowly over time that is at the heart of

2
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our equilibrium model.

We close the paper by presenting some suggestive empirical evidence for our theoretical

channels. Since we propose a consumption-based asset pricing model, industry cash flow data

are the quantity to be modeled in this exercise.2 We estimate an empirical cash flow network

by applying the generalized variance decomposition method suggested by Diebold and Yilmaz

(2014) to the earnings time series of 14 NAICS industries. Given spc for these industries, we

regress Sharpe ratios (as a proxy for the market prices of risk), return volatilities (as a proxy

for price exposures), and average excess returns of value-weighted industry portfolios on this

measure. In line with the model, we find in cross-sectional regressions positive coefficients

for Sharpe ratios, negative coefficients for return volatilities, and insignificant coefficients for

average excess returns.

Our paper is linked to several strands of literature. First, there are papers studying the

asset pricing implications of networks at the production level. Herskovic (2018) extends the

input-output framework of Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) to a

time-varying network and highlights the role of sparsity and concentration of an entire net-

work for capturing aggregate risk. Gofman, Segal, and Wu (2018) determine a firm’s vertical

position in the supply chain and calculate a top-minus-bottom spread which they explain

in a production economy with layer-specific capital. In an international context, Richmond

(2016) relies on Katz centrality and finds that more central countries have lower interest

rates and currency risk premia. The purely empirical papers by Ahern (2013) and Aobdia,

Caskey, and Ozel (2014) link equity returns to trade flows between industries. However, none

of these papers focus explicitly on the impact of directedness, i.e., the magnitude and the

direction of all the links of an asset, which is the key aspect we emphasize.3 Second, Buraschi

and Tebaldi (2018) model cash flows via jumps which are not mutually exciting. However,

their focus is not on directed links, but on systemic risk in banking networks. A third strand

of literature analyzes networks estimated from return data. An example for such papers

2We restrain from using input-output production data to construct our cash flow network. While it is
intuitive to assume that a firm or industry which is central in the production input-output network is also
central in the cash flow network, it is not clear at all whether a similar relation also holds with respect to
direction. Empirically, Carvalho, Nirei, Saito, and Tahbaz-Salehi (2016) document that cash flow shocks can
propagate both upstream and downstream along the supply chain. Consequently, directed links at the cash
flow level cannot necessarily be traced back to links of the same direction at the production level.

3There is also a strand of literature on production or supply chain networks in economics, however, they
do not focus on the asset pricing implications of network structures. Examples include, among others, Long
and Plosser (1983), Gabaix (2011), Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012), Carvalho and
Voigtländer (2015), Wu (2015), Acemoglu, Akcigit, and Kerr (2016), Carvalho, Nirei, Saito, and Tahbaz-
Salehi (2016), Barrot and Sauvagnat (2016), Wu (2016), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017),
Ozdagli and Weber (2017), and Tascherau-Dumouchel (2018). Carvalho (2014) provides an excellent review
of this literature.

3
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is Diebold and Yilmaz (2014). Many papers dealing with the measurement of systemic risk

also follow this route, e.g., Billio, Getmansky, Lo, and Pelizzon (2012) and Demirer, Diebold,

Liu, and Yilmaz (2017). The main difference between these papers and ours is that we model

the underlying fundamentals, i.e., cash flows, and prices and returns are then endogenously

determined in equilibrium.

Finally, Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015) are the first to discuss the role

of mutually exciting jumps in finance applications. The methodological framework of our

equilibrium model goes back to the paper by Eraker and Shaliastovich (2008). Besides, there

is an increasing literature about consumption-based asset pricing models with stochastic

jump intensities in the endowment process. For instance, Wachter (2013) and Gabaix (2012)

analyze the equity premium puzzle and the excess volatility puzzle in an economies with

a stochastic intensities for rare consumption disasters, but do so in models with only one

endowment stream, which obviously does not lend itself to any network applications.4

1. Model

1.1. Fundamental dynamics

We assume a Lucas endowment economy. Log aggregate consumption yt ≡ lnYt follows

dyt = µ dt+
n∑
j=1

Kj dNj,t,

where µ is the constant drift rate and the Nj,t (j = 1, . . . , n) are self and mutually exciting

jump processes with constant jump sizes Kj < 0.5 Their stochastic jump intensities `j,t have

dynamics

d`j,t = κj
(

¯̀
j − `j,t

)
dt+

n∑
i=1

βj,i dNi,t. (1)

4This framework is extended to a two-sector economy with jump intensities driven by correlated Brownian
motions in Tsai and Wachter (2016) and towards CDS pricing in Seo and Wachter (2018). Benzoni, Collin-
Dufresne, Goldstein, and Helwege (2015) analyze defaultable bonds subject to contagion risk in a general
equilibrium model. Nowotny (2011) investigates a one-sector economy with consumption following a self
exciting process. Branger, Kraft, and Meinerding (2014) show that self exciting processes can endogenously
evolve in a framework with learning about latent disaster intensities. A comprehensive summary of the
disaster risk literature is provided by Tsai and Wachter (2015).

5We do not include diffusion terms in the dynamics of aggregate consumption for parsimony. One could
of course generalize the model to incorporate additional types of diffusive risk premia, e.g., by making the
expected consumption growth rate time-varying, as long as the framework remains affine.

4
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The coefficients βj,i represent discrete changes in `j,t induced by a jump in Ni,t. The param-

eters βj,i, collected in what we call the “beta matrix” or the connectivity matrix, completely

determine the structure of a given network.6 To preclude negative intensities we assume

βj,i ≥ 0 for all pairs (j, i).

There are n industries in the economy, indexed by i, with the following dynamics for

log cash flows yi,t:

dyi,t = µi dt+ Li dNi,t (i = 1, . . . , n). (2)

We do not link aggregate consumption to the sum of cash flows, but model cash flows as

claims on certain risk factors in the consumption process. The difference can be thought of,

e.g., as the investor’s implicit labor income. Note that this specification is consistent with

empirical data, e.g., Santos and Veronesi (2006) point out that the sum of cash flows is only

a fraction of aggregate consumption. This assumption is present in asset pricing models like

Campbell and Cochrane (1999), Longstaff and Piazzesi (2004), Bansal and Yaron (2004),

Backus, Chernov, and Martin (2011), or Barberis, Greenwood, Jin, and Shleifer (2015).

Equations (1) and (2) formalize how the beta matrix gives rise to a dynamic shock

propagation mechanism by which negative shocks to one cash flow stream can spread across

the economy. With βj,i > 0, a downward jump in cash flow i immediately increases the jump

intensity of cash flow j by the amount βj,i. Once the increased intensity `j,t indeed leads

to a jump in cash flow j and there is a nonzero coefficient βk,j, the initial shock is passed

on to asset k and can in this way be propagated through the whole network. Note that our

specification is general in the sense that it also allows for “feedback loops”, i.e., depending on

the structure of the network, an initial shock to node i can, after a number of intermediate

steps, eventually reach node i itself again. Nevertheless, each jump only affects one cash flow

directly, so that network connectivity is captured exclusively via linkages in the dynamics of

the state variables, not at the cash flow level itself.

Mutually exciting jumps provide certainly not the only, but a very lean and reduced-

form modeling tool to capture exactly the above intuition. An initial cash flow shock in

industry i increases the probability of future cash flow shocks to a connected industry j 6= i

(and potentially also firm i itself), but it is unknown when (and if at all) these shocks

will materialize. Stated differently, a cash flow shock of one firm changes the conditional

distribution of future cash flows of other firms, but does not affect the level of these cash

flows instantaneously. The structure of the jump processes in our model thus differs in a

6Our network is weighted in the sense that the links between nodes are represented by (positive) real
numbers, not just by the binary 0-1 information whether two nodes are linked or not.

5
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time series and in a cross-sectional dimension from, for instance, contemporaneous jumps in

many assets. Representing this time dimension of shock propagation alternatively by, e.g., a

discrete-time vector autoregressive model would lead to the problem that the sum of AR(1)

processes is not necessarily an AR(1) process itself (see Granger and Morris (1976)).

As stated above, our specification ensures that the vectorXt = (yt, `1,t, . . . , `n,t, y1,t, . . . , yn,t)
′

follows an affine jump process.7 The joint process (Nt, `t) is Markov. In all applications of the

model, we assume κi > βi,i for i = 1, . . . , n, so that the vector of intensities ` is stationary.8

In the following analyses, we refer to one particular measure for the directedness of

cash flow shocks. The shock propagation capacity, spc, of asset i is defined as the respective

column sum of the beta matrix without the diagonal entry:9

spci =
n∑
j=1
j 6=i

βj,i. (3)

This measure has been proposed by, e.g., Jackson (2008) and Diebold and Yilmaz (2014)

and represents the total strength of the network links going from node i to all other nodes

in the network. In the framework of our model, the higher the spc of a given node, the more

a shock to its cash flow increases the jump intensities of other nodes.10

1.2. Market prices of jump risk

Our economy is populated by a representative agent with an infinite planning horizon. We

assume that the agent has recursive preferences so that the risk generated by state variables

(in this case the intensities `i,t) will be priced in equilibrium.

The derivation of the model solution closely follows Eraker and Shaliastovich (2008).11

They show that the continuous-time dynamics of the pricing kernel Mt can be written as

d lnMt = −δ θ dt− (1− θ) d lnRt −
θ

ψ
dyt,

where δ is the subjective time preference rate, γ is the coefficient of relative risk aversion,

7See Appendix A for details.
8See, e.g., Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015) for details about mutually exciting processes, in

particular, concerning conditions for stationarity.
9Disregarding the diagonal entry is standard practice in the literature, see Diebold and Yilmaz (2014).

10Although we call spc a measure of directedness, it can of course also be applied in an undirected network,
i.e., in a network where the connectivity matrix is symmetric.

11Details are presented in Appendix A.

6
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ψ is the elasticity of intertemporal substitution (EIS), and θ ≡ 1−γ
1− 1

ψ

. We assume that the

representative agent has a preference for early resolution of uncertainty, implying γ > 1
ψ

and

thus θ < 1.

The return on the consumption claim Rt satisfies the following continuous-time version

of the Euler equation

0 =
1

dt
Et

[
d
(
elnMt+lnRt

)
elnMt+lnRt

]
,

and follows from the dynamics of the log wealth-consumption ratio v and aggregate con-

sumption. To compute Rt, we use the Campbell-Shiller log-linear approximation d lnRt =

kv,0 dt + kv,1 dvt − (1− kv,1) vt dt + dyt with linearizing constants kv,0 and 0 < kv,1 < 1.

Employing the usual affine guess for the log wealth-consumption ratio vt, i.e., assuming

vt = A + B′ `t with B = (B1, . . . , Bn)′ and `t = (`1,t, . . . , `n,t)
′, we can solve numerically for

the coefficients A and B as well as for the linearizing constants.

The dynamics of the pricing kernel are

dMt

Mt

= −rt dt−
n∑
i=1

MPJRi (dNi,t − `i,tdt),

where rt is the equilibrium risk-free rate and MPJRi is the market price of risk for the jump

process Ni. These in general negative market prices of jump risk are given as

MPJRi = 1− exp

{
−γ Ki + kv,1 (θ − 1)

[
n∑
j=1

Bj βj,i

]}
, (4)

with kv,1 = ēv

1+ēv
, where ēv is the steady-state wealth-consumption ratio. The exponential

term is a product of two factors. The first one, exp {−γ Ki}, represents the compensation

for the immediate shock caused by the jump in cash flow i. Since Ki < 0 these market

prices of jump risk are in general negative. The second one with the remaining exponents is

the compensation for the risk caused by variations in the state variables and is one of the

key features of our model. It depends on the impact of the intensities `i on the equilibrium

wealth-consumption ratio, represented by the components of the vector B.

The coefficients in B depend on the structure of the network, and they are in general

not equal across all j = 1, . . . , n. Therefore, we cannot immediately formulate the market

prices of risk as functions of network measures such as spc just from Equation (4). To obtain

predictions for how the structure of the network affects the market prices of risk, we derive

7
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the following proposition through a first-order approximation.12

Proposition 1. Assume that κ1 = . . . = κn = κ and K1 = . . . = Kn = K. Then, the market

price of jump risk MPJRi satisfies

MPJRi = 1− exp
{
A+ B · (βi,i + spci) +O

(
β2
)}
,

where the coefficients A and B are given by

A = −γ K

B =
(θ − 1) (1− exp {K (1− γ)})

θ
[
(1− κ)− 1

kv,1

]
and O(β2) denotes polynomial terms of order 2 or higher in the coefficients of the network

matrix. Defining the first-order approximation

MPJR∗∗i ≡ 1− exp {A+ B · (βi,i + spci)} (5)

and assuming γ > 1, θ < 0, 0 < κ < 1, and K < 0, we obtain the following results:

(1) A > 0 and B > 0.

(2) If spci > spcj, then |MPJR∗∗i | >
∣∣MPJR∗∗j

∣∣.
Proof: See Appendix B.1.

The second exponential factor on the right-hand side of (5) is one of the key features of

our model. The spc of an asset is the main driver of the equilibrium market price of risk. The

proposition states that the market prices of risk for jumps associated with high spc assets

are larger (in absolute terms) than those of low spc assets (note that A and B do not depend

on i).13

The economic intuition behind this key result is the following. By definition, high spc

industries have more links or stronger links to other industries, relative to their low spc

12First-order approximations are used, e.g., in Carvalho, Nirei, Saito, and Tahbaz-Salehi (2016) or Walden
(2018) to make statements about general network structures. A different strategy to obtain closed-form
solutions for equilibrium quantities as functions of network measures is to focus on special cases in which the
connectivity matrix is very sparse. For instance, in Online Appendix A, we derive such closed-form solutions
without approximations in so-called star (or core-periphery) networks.

13In Appendix B.3, we analyze the quality of the first-order approximation in Proposition 1 by regressing
the approximate solution (5) on the exact solution (4) for the empirical network estimated in Section 2.
The R2 of this regression is 0.98, the ordering of the assets, and the signs of the market prices of risk are
all preserved. The slope of the regression line is 0.26, implying that the higher-order terms omitted in the
approximation are quantitatively sizable, but do not change any of our model results qualitatively.

8
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counterparts. Hence, cash flow shocks originating from a high spc industry have a more

pronounced impact on the rest of the economy, i.e. they increase the aggregate risk of sub-

sequent shocks by a larger amount. In models with stochastic cash flow jump intensities and

recursive preferences, the wealth-consumption ratio is generally decreasing in the aggregate

jump risk.14 The wealth-consumption ratio in our economy thus reacts more negatively to

cash flow shocks of high spc assets. These shocks are thus more “systematic” and carry a

higher (i.e. more negative) market price of risk in equilibrium.

The proposition explicates that a necessary condition for this key result is that B > 0,

and this condition is satisfied under some mild preference parameter restrictions like θ < 0,

which implies ψ > 1 (if γ > 1). In this situation, the intertemporal substitution effect

dominates the income effect, so that the investor wants to consume more and save less in

bad times with high jump intensities. The proposition also shows that in the special case of

CRRA utility (θ = 1, implying B = 0), the second term in Equation (5) vanishes, implying

that state variable risk is not priced and that the market prices of risk do not depend on the

network structure. Finally, MPJRi is the larger, the larger the impact of jumps in asset i on

aggregate consumption, as measured by K.

1.3. Jump exposures

In analogy to the return on the consumption claim, the returns Ri,t on the individual cash

flow claims satisfy the continuous-time Euler equations

0 =
1

dt
Et

[
d
(
elnMt+lnRi,t

)
elnMt+lnRi,t

]
.

To compute the expected excess return on asset i, we proceed as in the case of the con-

sumption claim, i.e., we employ an affine guess for the log price-to-cash flow ratio of asset

i, vi,t = Ai + C ′i`t with Ci = (Ci,1, . . . , Ci,n)′, and use the Campbell-Shiller approximation

d lnRi,t = ki,0 dt + ki,1 dvi,t − (1− ki,1) vi,t dt + dyi,t with linearization constants ki,0 and

0 < ki,1 < 1. Again, we solve for the coefficients Ai and Ci,j (j = 1, . . . , n) as well as for the

linearization constants ki,0 and ki,1 numerically.

The return on the i-th individual cash flow claim is then given by

dRi,t = . . . dt+
n∑
j=1

JEXPi,j dNj,t,

14This has been shown, e.g., by Wachter (2013).

9
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with the jump exposures

JEXPi,j =

{
exp (Li + ki,1

∑n
k=1 Ci,k βk,i)− 1 for j = i

exp (ki,1
∑n

k=1 Ci,k βk,j)− 1 for j 6= i.
(6)

The exponential term in the exposure of asset i to jumps in its own cash flow, JEXPi,i,

has two components. First, there is the price change due to the immediate cash flow shock,

represented via the jump size Li. By assumption this component is only present in the

exposure of asset i to jumps in its own cash flow i because yi is exclusively affected by Ni,

i.e., jumps in other intensities do not have a direct impact on the cash flow yi. The second

term is a special feature of models with recursive utility and captures the effect of a shock in

cash flow j on asset i’s price-to-cash flow ratio. For j 6= i, the exposure JEXPi,j only consists

of this valuation ratio effect.

In Equation (6), the coefficients Ci,k depend on the network structure. Since they will

not coincide for all k = 1, . . . , n in general, we cannot simply factor out spc in Equation (6).

Therefore, we again apply a first-order approximation allowing us to formulate the following

proposition.15

Proposition 2. Assume that κ1 = . . . = κn = κ and K1 = . . . = Kn = K. Then, the jump

exposures JEXPi,j of asset i against shocks to cash flow j satisfy the equation

JEXPi,j =

 exp
{
Ci ·
∑n

k=1,k 6=i βk,j +Di · βi,j +O (β2)
}
− 1 for j 6= i

exp
{
L+ Ci ·

∑n
k=1,k 6=i βk,i +Di · βi,i +O (β2)

}
− 1 for j = i,

where the coefficients Ci and Di are given by

Ci =
1− exp {−K γ} − θ−1

θ
[1− exp {K (1− γ)}]

1− κ− 1
ki,1

Di =
1− exp {L−K γ} − θ−1

θ
[1− exp {K (1− γ)}]

1− κ− 1
ki,1

and O(β2) denotes polynomial terms of order 2 or higher in the network coefficients. Defining

the first-order approximation

JEXP∗∗i,j :=

 exp
{
Ci ·
∑n

k=1,k 6=i βk,j +Di · βi,j
}
− 1 for j 6= i

exp
{
L+ Ci ·

∑n
k=1,k 6=i βk,i +Di · βi,i

}
− 1 for j = i

(7)

15In Online Appendix A, we show that qualitatively similar closed-form solutions for the return volatility
can be obtained without approximations in so-called star (or core-periphery) networks.
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and assuming γ > 1, 0 < κ < 1, and − log(2) < K < 0, we obtain Ci > 0 for all i.

Additionally assuming θ < 0, we obtain

(1) Di < 0, and Di − Ci < 0 for all i.

(2) If JEXP∗∗i,i, JEXP∗∗j,j < 0, ki,1 = kj,1, and spci > spcj, then
∣∣JEXP∗∗i,i

∣∣ < ∣∣JEXP∗∗j,j
∣∣.

Proof: See Appendix B.2.16

For j 6= i, the expression for JEXP∗∗i,j comprises two terms. The quantityDi βi,j describes

a price effect through direct spillover of shocks from j to i. A jump in asset j increases the

jump intensity of asset i by βi,j. Since Di < 0, the reaction of the price-dividend ratio of i

due to this direct effect, exp {Di βi,j} − 1, is negative.

The term Ci ·
∑n

k=1,k 6=i βk,j represents an equilibrium “hedge effect”. A jump in asset

j increases the jump intensities of (some or all) other assets k 6= i, and the price of asset

i increases through this mechanism, since Ci > 0. This hedge effect is always positive,

irrespective of the preference parameter θ. Intuitively, the hedge effect makes assets which

are not directly affected by a jump in asset j’s cash flow relatively more attractive. For j 6= i,

we can rewrite

JEXP∗∗i,j = exp
{
Ci · spcj + Ci · βj,j + (Di − Ci) βi,j

}
− 1, (8)

which implies that the hedge effect is larger for shocks originating from high spc assets than

from low spc assets.

For j = i, this positive hedge effect reduces the negative cash flow effect of a jump in

i on the price of asset i itself, represented by exp {L} − 1. Again, we can write

JEXP∗∗i,i = exp {L+ Ci · spci +Di · βi,i} − 1,

i.e., the hedge effect is more pronounced for a high spc asset than for a low spc asset.

The ultimate sign of JEXP∗∗i,j depends on the trade-off between the hedge effect,

Ci ·
∑n

k=1,k 6=i βk,j, and the direct price effect, Di · βi,j, and thus on the network structure.

Despite the fact that the hedge effect is positive for any network structure and any prefer-

ence parameter θ, the choice of preferences is still very important for the overall properties

16In Appendix B.3, we analyze the quality of the first-order approximation in Proposition 2 by regressing
the approximate solution on the exact solution of Equation (6) for the network estimated in Section 2. The
R2 of this regression is 0.98, the ordering of the assets, and the signs of the jump exposures are all preserved.
The slope of the regression line is 0.77, implying that the higher-order terms omitted in the approximation
are quantitatively sizeable, but do not change any of our results qualitatively.
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of the model. For L > K γ, CRRA preferences (θ = 1) will lead to all cross-exposures

JEXP∗∗i,j > 0 being positive, so that here the hedging effect massively outweighs the di-

rect negative effect. With recursive preferences, on the other hand, there will also be pairs

of assets with JEXP∗∗i,j < 0, i.e., there will be cases when the hedging effect is not strong

enough to dominate the direct negative effect. For i = j, the exposure JEXP∗∗i,i comprises a

third component, L, and if this parameter is chosen strongly negative, then JEXP∗∗i,i will be

negative.

1.4. Expected excess returns

Finally, the local expected excess return of asset i can be written as

1

dt
Et [dRi,t]− rt =

n∑
j=1

`j,t MPJRj JEXPi,j, (9)

i.e., the risk premium of asset i is given by the sum of the products of jump intensity, market

price of risk, and jump exposure over all n jump components.

Although the expected excess return depends on all market prices and all exposures,

the summand MPJRi JEXPi,i is usually the largest in this sum because the exposure JEXPi,i

also comprises the direct cash flow effect captured by the cash flow jump size L, as shown in

Equation (7). Propositions 1 and 2 show that MPJRi is higher for high spc assets than for

low spc assets, whereas the relation is the other way around for JEXPi,i. Thus, we cannot

obtain unambiguous cross-sectional predictions regarding the impact of spc on expected

excess returns.

For this insight, recursive preferences are crucial. With CRRA utility, the market price

of risk on all jumps would be identical, and all cross exposures would be positive for L > K γ.

So the trade-off outlined above does not exist and high spc assets earn larger expected excess

returns than low spc assets in a CRRA economy.

2. Suggestive empirical evidence

To present suggestive evidence for the theoretical channels outlined above, we use a time

series of log earnings growth rates for 14 industry portfolios which we constructed based

on the NAICS code of all firms in the CRSP/Computstat merged (CCM) fundamentals

quarterly database over the sample from 1966-Q2 to 2014-Q4. This time series allows us to

estimate the directed earnings network following the procedure proposed by Diebold and

12
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Yilmaz (2014).17 The first step is to estimate a 14-dimensional VAR(1) process based on our

earnings growth time series, i.e., zt = φ0 + φ1 zt−1 + εt. From the coefficient matrix φ1 and

the covariance matrix of the shocks ε, we compute generalized variance decompositions of

quarterly earnings with a forecast horizon of H = 4 quarters.18 We denote the fraction of

H-quarter forecast error variance of industry i’s earnings explained by shocks in industry

j’s earnings by di,j. This gives us a 14× 14 matrix (di,j)i,j=1,...,14, which Diebold and Yilmaz

(2014) refer to as the connectedness table. This matrix serves as our empirical network

matrix from which we compute the shock propagation capacity spcj for industry j analogous

to Equation (3) as spcj =
∑N

i=1
i 6=j

di,j. Diebold and Yilmaz (2014) call this measure total

directional connectedness to others from j.

According to the firm’s NAICS code, we form value-weighted industry portfolios and

we calculate three variables over the whole sample, which serve as dependent variables in our

regressions. The average excess return of an industry portfolio is the mean of the difference

between its log return and the log three-month Treasury bill return. Return volatilities are

calculated as the standard deviations of log returns. Sharpe ratios are computed as average

excess returns divided by return volatilities.

The Sharpe ratio of an industry serves as a proxy for the market price of risk for cash

flow shocks of the respective industry, MPJR, because these market prices of risk are not

observable empirically. Recall from Equation (9) that the expected excess return on asset

i is given as 1
dt
E [dRi] − r =

∑n
j=1 `j JEXPi,j MPJRj. The i-th summand is by the far the

largest on the right-hand side, since JEXPi,i is the only exposure containing the direct cash

flow effect represented by the jump size L. The expected excess return of an asset is thus

mostly driven by the response of its price and of the pricing kernel to its own cash flow

shocks. Therefore we use the Sharpe ratio of asset i as a proxy for MPJRi and the return

volatility as a proxy for JEXPi,i.

Panel A in Table 1 reports the results from this exercise. In the cross-sectional re-

gressions, the independent variables are the industry shock propagation capacities and the

dependent variables are return volatilities, Sharpe ratios, and average excess returns.19 In

line with the model, we find positive and significant coefficients for Sharpe ratios, negative

17We thank Francis Diebold and Kamil Yilmaz for sharing their code.
18There is no clear guidance towards the optimal choice of the forecast horizon H. As documented by

Diebold and Yilmaz (2014), who choose H = 12 days for their daily stock return data, a very short horizon
produces noisy estimates, but the estimates stabilize with longer horizons. We find similar, albeit weaker,
effects of the forecast horizon in our estimation and, therefore, report results for H = 4 quarters in the
following and present those for H = 1, 2, 3 in Online Appendix C. There we also explain the details of the
data construction process, provide plots for the empirical cash flow networks for different forecast horizons,
and report summary statistics for spc and the industry portfolio returns.

19Although one of the three regressions is redundant, we report all three for the sake of completeness.
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and significant coefficients for return volatilities, and insignificant coefficients for average

excess returns. Since the effects of spc on the market price of jump risk and on price expo-

sures have opposite signs, the impact of directedness on expected excess returns can only

be assessed appropriately when the two opposing effects described above are disentangled.

Finally, the coefficients in the Sharpe ratio and return volatility regressions are also econom-

ically significant. A one-standard-deviation difference in spc leads to a difference in Sharpe

ratios of roughly 8.18 · 0.16 ≈ 1.31 percentage points monthly or −4.41 · 0.16 ≈ −0.71 for

return volatilities.

The existing literature on network linkages and cross-sectional asset pricing features a

different approximation for the relative importance of a node in a network, namely eigenvec-

tor centrality.20 Therefore, Panel B in Table 1 presents the results of regressions analogous

to those shown in Panel A, but now with evc as additional regressor where we orthogonalize

evc with respect to spc to quantify its additional explanatory power beyond spc.21 While

evc remains insignificant for Sharpe ratios, it seems to have explanatory power beyond spc

for the cross-section of return volatilities for industry portfolios. Finally, in the bivariate re-

gressions for average excess returns, evc yields negative and significant coefficients. Overall,

we conclude that our theoretically motivated measure of directedness spc indeed contains

additional information above and beyond the information captured by evc.

3. Conclusion

Networks have received considerable attention in the finance and economics literature. In this

paper, we analyze the implications of directed links in cash flows networks for equilibrium

returns. Our analysis is motivated by Carvalho, Nirei, Saito, and Tahbaz-Salehi (2016) who

provide rich empirical evidence for a delayed propagation of cash flow shocks, both at the

firm and at the industry level, in a natural experiment setting around the nuclear incident

of Fukushima in 2011. We model this delayed propagation with mutually exciting processes

which naturally feature directedness and capture the intuition that cash flow shocks to one

node in the network affect other nodes only with a certain time lag.

In our equilibrium model, we combine these self and mutually exciting jump processes

for cash flows with a representative investor with recursive preferences. We prove the following

cross-sectional statements for arbitrary directed networks: (i) Cash flow shocks in industries

20We provide more details on this concept, which has been introduced by Bonacich (1972a,b) and applied,
e.g., by Demirer, Diebold, Liu, and Yilmaz (2017) and Walden (2018), in Appendix C.

21For the sake of brevity, we again report the results for H = 4 quarters in the following and present
those for H = 1, 2, 3 in Online Appendix C.6 which also contains the summary statistics for evc.
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with high shock propagation capacity (spc) have a high market price of risk. (ii) The response

of the price-to-cash flow ratio of an industry to its own cash flow shocks is less pronounced

for industries with higher spc. Importantly, when it comes to expected excess returns, the

effects of spc on market prices of risk and on exposures work in opposite directions, so that

the overall impact of spc on risk premia depends on the tradeoff between these two forces.

We close the paper by presenting some suggestive empirical evidence for our theoretical

channels, where we estimate an empirical network from industry cash flows by applying the

Diebold and Yilmaz (2014) generalized variance decomposition methodology. In line with

the model, we find that high spc industries have lower return volatilities and higher Sharpe

ratios than their low spc counterparts. Regression coefficients for average excess returns are,

however, insignificant.

To sum up, the innovative combination of self and mutually exciting jump processes

with recursive preferences allows for the integration of directed networks into a tractable equi-

librium asset pricing model. Our results indicate that it is necessary to decompose equilibrium

asset prices and returns into their constituents in order to understand the implications of

directed cash flow shock propagation.
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APPENDIX

A. Model solution

To solve for the equilibrium we apply the approach proposed in Eraker and Shaliastovich (2008).

The vector X ≡ (y, `1, . . . , `n, y1, . . . , yn)′ follows the affine jump process

dXt = µ (Xt) dt+ ξt dNt,

where we use the following notation:

• µ(Xt) =M+KXt

with M =



µ

κ1
¯̀
1

...

κn ¯̀
n

µ1

...

µn


and K =



0 0 . . . 0 . . . 0

0 −κ1 . . . 0 . . . 0
...

...
. . .

...
. . .

...

0 0 . . . −κn . . . 0

0 0 . . . 0 . . . 0
...

...
. . .

...
. . .

...

0 0 . . . 0 . . . 0


,

• `t = l0 + l1Xt

with l0 =


0
...

0

 and l1 =


0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0

,

• ξt =
(
ξ1,t, . . . , ξn,t

)
=



K1 . . . Kn

β1,1 . . . β1,n

...
. . .

...

βn,1 . . . βn,n

L1 . . . 0
...

. . .
...

0 . . . Ln


.

The jump transform % (u) ≡ E
[(
eu
′ξ1,t , . . . , eu

′ξn,t
)]′

is in our case simply equal to
(
eu
′ξ1,t , . . . , eu

′ξn,t
)′

,

since the jump sizes are all constant.

We define the selection vectors δy, δ`i,t (i = 1, . . . , n), and δy,i (i = 1, . . . , n) implicitly via

dyt = δ′y dXt, d`i,t = δ′`,i dXt, and dyi,t = δ′y,i dXt.
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The continuous-time version of the Euler equation can be written as

0 =
1

dt
Et

[
d
(
elnMt+lnRt

)
elnMt+lnRt

]
, (A.1)

where R is the return on the claim to aggregate consumption. The logarithm of the pricing kernel

has the dynamics

d lnMt = −δ θ dt− (1− θ) d lnRt −
θ

ψ
dyt.

We apply the usual affine conjecture for the log wealth-consumption ratio

vt = A+ (0, B1, . . . , Bn, 0, . . . , 0) Xt

= A+ (B1, . . . , Bn) `t,

and use the Campbell-Shiller approximation for the return on the consumption claim

d lnRt = kv,0 dt+ kv,1 dvt − (1− kv,1) vt dt+ dyt.

Combining the Campbell-Shiller approximation, the affine guess for vt, and the dynamics of the log

pricing kernel, we get

d
(
elnMt+lnRt

)
elnMt+lnRt

=
{
−δ θ + θ kv,0 − θ (1− kv,1)

(
A+B′Xt

)
+ χ′y (M+KXt)

}
dt

+
{
eχ
′
y ξt − 1

}
dNt, (A.2)

where

χy = θ

[(
1− 1

ψ

)
δy + kv,1B

]
=

(
−θ

(
1

ψ
− 1

)
, θ kv,1B1, . . . , θ kv,1Bn, 0, . . . , 0

)′
,

and where 1 is a vector of ones with length n. We plug expression (A.2) into the Euler equation (A.1)

to get a system of equations for A and B:

0 = θ [−δ + kv,0 − (1− kv,1) A] +M′ χy + l′0 [% (χy)− 1] (A.3)

0 = K′ χy − θ (1− kv,1) B + l′1 [% (χy)− 1] . (A.4)
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We have two additional equations for the loglinearization constants kv,0 and kv,1:

0 = −kv,0 − ln kv,1 + (1− kv,1)
[
A+B′ µX

]
(A.5)

0 = A+B′ µX − ln (kv,1) + ln (1− kv,1) , (A.6)

where µX is a vector with i-th component E [Xi] if that expectation is finite and 0 otherwise. Due

to the presence of the mutually exciting jump terms, the long-run means ¯̀̄
i, i.e., the unconditional

expectations, are not equal to the respective mean reversion levels ¯̀
i, as it would be the case, e.g.,

for a standard square-root process. According to Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015), the
¯̀̄
i are the solution to the following system of equations:

¯̀̄
i =

κi ¯̀
i +
∑

j 6=i βi,j
¯̀̄
j

κi − βi,i
(i = 1, . . . , n). (A.7)

We assume κi > βi,i for i = 1, . . . , n to ensure that all the ¯̀̄
i are positive.

We solve the four equations (A.3), (A.4), (A.5), and (A.6) via an iterative procedure. We

initialize kv,1 by setting it equal to δ, then compute kv,0, A, and B. Given these we then compute

kv,1 again and iterate forward until the system converges.

The pricing kernel has dynamics

dMt

Mt
= −rt dt− [1− % (−λ)]′ (dNt − `tdt)

with

λ = γ δy + (1− θ) kv,1B

= (γ, (1− θ) kv,1B1, . . . , (1− θ) kv,1Bn, 0, . . . , 0)′ ,

so that we can immediately read off the risk-free rate and the market prices of risk. The risk-free

rate is given as

rt = Φ0 + Φ′1Xt

with

Φ0 = θ δ + (θ − 1)
[
ln kv,1 + (kv,1 − 1) B′ µX

]
+M′ λ− l′0 [% (−λ)− 1]

and

Φ1 = (1− θ) (kv,1 − 1) B +K′ λ− l′1 [% (−λ)− 1] .
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The market prices of jump risk are given as
MPJR1

...

MPJRn

 = [1− % (−λ)]

=


1− exp (−γ K1 + kv,1 (θ − 1) [B1 β1,1 + . . .+Bn βn,1])

...

1− exp (−γ Kn + kv,1 (θ − 1) [B1 β1,n + . . .+Bn βn,n])

 .

The return on the consumption claim is given by

dRt = {. . .} dt+ {% (δy + kv,1B)− 1} dNt

with jump exposures 
JEXPy,1

...

JEXPy,n

 = % (δy + kv,1B)− 1,

where

JEXPy,i = exp [K1 + kv,1 (B1 β1,1 + . . .+Bn βn,1)]− 1

for i = 1, . . . , n.

To obtain the expected excess returns on the cash flow claims, we follow the same approach

as for the consumption claim. The continuous-time Euler equation again reads

0 =
1

dt
Et

[
d
(
elnMt+lnRi,t

)
elnMt+lnRi,t

]
.

Applying the Campbell-Shiller approximation

d lnRi,t = ki,0 dt+ ki,1 dvi,t − (1− ki,1) vi,t dt+ dyi,t

and the usual affine guess for the log price-to cash flow ratio

vi,t = Ai + (0, Ci,1, . . . , Ci,n, 0, . . . , 0) Xt

= Ai + (Ci,1, . . . , Ci,n) `t,
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we arrive at

d
(
elnMt+lnRi,t

)
elnMt+lnRi,t

=
{
−δ θ − (1− θ)

[
kv,0 − (1− kv,1)

(
A+B′Xt

)]
+ ki,0

− (1− ki,1)
[
Ai + C ′iXt

]
+ χ′y,i (M+KXt)

}
dt

+
{
eχ
′
y,i ξt − 1

}
dNt, (A.8)

where χy,i = ki,1Ci + δy,i − λ. Plugging (A.8) into the Euler equation yields a system of equations

for the coefficients Ai and Ci:

0 = −θ δ + (1− θ)
[
ln kv,1 − (1− kv,1) B′ µX

]
− ln ki,1 + (1− ki,1) C ′i µX

+M′ χy,i + l′0 [% (χy,i)− 1] (A.9)

0 = K′ χy,i + (1− θ) (1− kv,1) B − (1− ki,1) Ci + l′1 [% (χy,i)− 1] . (A.10)

The two additional equations for the log-linearization constants ki,0 and ki,1 are

0 = −ki,0 − ln ki,1 + (1− ki,1)
(
Ai + C ′i µX

)
(A.11)

0 = Ai + C ′i µX − ln ki,1 + ln (1− ki,1) . (A.12)

The return of the individual cash flow claim i is then given by

dRi,t = {. . .} dt+ {% (δy,i + ki,1Ci)− 1} dNt

so that the jump exposure of the return is thus given by

JEXPi,1
...

JEXPi,i
...

JEXPi,n


= [% (δy,i + ki,1Ci)− 1]

=



exp (ki,1 [Ci,1 β1,1 + . . .+ Ci,n βn,1])− 1
...

exp (Li + ki,1 [Ci,1 β1,i + . . .+ Ci,n βn,i])− 1
...

exp (ki,1 [Ci,1 β1,n + . . .+ Ci,n βn,n])− 1


.
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The expected return on the claim to cash flow i can then be written as

1

dt
Et [dRi,t] = − ln ki,1 + (1− ki,1) C ′i (µX −Xt) + [δi + ki,1Ci]

′ (M+KXt)

+ [% (δy,i + ki,1Ci)− 1] (l0 + l1Xt) .

The expected excess return is given by

1

dt
Et [dRi,t]− rt = (l0 + l1Xt)

′ [% (χy,i + λ) + % (−λ)− % (χy,i)− 1]

which can be represented as

1

dt
Et [dRi,t]− rt =

n∑
j=1

`j,t MPJRj JEXPi,j .

B. Approximation for general network structures

B.1. Market prices of jump risk

B.1.1. First approximation step

Rewriting Equation (A.4) for κ1 = . . . = κn = κ and K1 = . . . = Kn = K gives the following

system of equations

0 = B1 θ [kv,1 (1− κ)− 1] + exp {K (1− γ) + θ kv,1 (B1 β1,1 + . . .+Bn βn,1)} − 1

...

0 = Bn θ [kv,1 (1− κ)− 1] + exp {K (1− γ) + θ kv,1 (B1 β1,n + . . .+Bn βn,n)} − 1

and translating this into matrix notation yields

1 = θ [kv,1 (1− κ)− 1] B + exp {K (1− γ)} exp
{
θ kv,1 β

′B
}
,

where now and in the following, the “exp” operator, applied to a vector, stands for element-wise

application of the “exp” operator to the vector.

Next, we apply the approximation exp (x) = 1 + x+O
(
x2
)

and solve for B:

B =

(
In×n +

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)−1
1

θ [kv,1 (1− κ)− 1]
[1− exp {K (1− γ)}]

+O
(
β2
)

(B.1)
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where In×n denotes an n × n identity matrix and exp{K (1−γ)}
1−κ− 1

kv,1

< 0 since 1
kv,1

> 1 − κ (due to

1
kv,1

= 1+ēv

ēv > 1 > 1− κ for 0 < κ < 1).

To conclude the first approximation step, we define

B∗ =

(
In×n +

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)−1
1

θ [kv,1 (1− κ)− 1]
[1− exp {K (1− γ)}] . (B.2)

B.1.2. Second approximation step

Since the inverse term in Equation (B.1) has the structure of a Leontief inverse, (I −A)−1 =

I +A1 +A2 + . . ., we rewrite (B.1) as:

B =

In×n − exp {K (1− γ)}
1− κ− 1

kv,1

β′ −

(
exp {K (1− γ)}

1− κ− 1
kv,1

β′

)2

− . . .

 1

θ [kv,1 (1− κ)− 1]

× [1− exp {K (1− γ)}] +O
(
β2
)

=

(
In×n −

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)
1

θ [kv,1 (1− κ)− 1]
[1− exp {K (1− γ)}]

+O
(
β2
)

(B.3)

To conclude the second approximation step, we define

B∗∗ =

(
In×n −

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)
1

θ [kv,1 (1− κ)− 1]
[1− exp {K (1− γ)}] . (B.4)

Plugging (B.3) into the market price of risk from Equation (4) and rewriting this in matrix

notation yields:

MPJR = 1− exp

{
−γ K +

kv,1 (θ − 1)

θ [kv,1 (1− κ)− 1]

[
β′ [1− exp {K (1− γ)}] +O

(
β2
)]}

= 1− exp

−γ K +
(θ − 1) (1− exp {K (1− γ)})

θ
[
(1− κ)− 1

kv,1

] (βdiag + spc) +O
(
β2
)

= 1− exp
{
A+ B (βdiag + spc) +O

(
β2
)}

with A and B given in Proposition 1. Thus we define

MPJR∗∗ = 1− exp {A+ B (βdiag + spc)} . (B.5)

For γ > 1, θ < 0, 0 < κ < 1, and K < 0, we have A > 0 and B > 0 since 1
kv,1

> 1− κ.
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B.2. Jump exposures

B.2.1. First approximation step

Rewriting Equation (A.10) for κ1 = . . . = κn = κ and K1 = . . . = Kn = K gives a system of

equations for each i, exemplified in the following for i = 1:

0 = B1 (kv,1 − 1) (θ − 1) + C1,1 (k1,1 − 1)− κ [B1 kv,1 (θ − 1) + C1,1 k1,1]

+ exp {L−K γ + β1,1 [B1 kv,1 (θ − 1) + C1,1 k1,1] + . . .+ βn,1 [Bn kv,1 (θ − 1) + C1,n k1,1]} − 1

...

0 = Bn (kv,1 − 1) (θ − 1) + C1,n (k1,1 − 1)− κ [Bn kv,1 (θ − 1) + C1,n k1,1]

+ exp {−K γ + β1,n [B1 kv,1 (θ − 1) + C1,1 k1,1] + . . .+ βn,n [Bn kv,1 (θ − 1) + C1,n k1,1]} − 1.

Collecting terms and introducing matrix notation yields the following system for each i:

1 = B (θ − 1) [kv,1 (1− κ)− 1] + Ci [ki,1 (1− κ)− 1]

+ [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • exp
{
kv,1 (θ − 1) β′B + ki,1 β

′Ci
}
,

where now and in the following, • represents element-wise multiplication of the vectors. In×1,i is

an n× 1 vector with the i-th entry equal to 1 and zeros otherwise.

Again, we employ exp (x) = 1 + x+O
(
x2
)

and solve for Ci:

Ci =

(
I +

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)−1

1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
+O

(
β2
)
, (B.6)

where
exp{−K γ}1+(exp{L−K γ}−exp{−K γ}) In×1,i

1−κ− 1
ki,1

< 0 since 1
ki,1

> 1−κ (due to 1
ki,1

= 1+ ¯evi
¯evi

> 1 > 1−κ

for 0 < κ < 1).
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To conclude the first approximation step, we define

C∗i =

(
I +

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)−1

1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
. (B.7)

B.2.2. Second approximation step

Again the inverse term in Equation (B.6) has the structure of a Leontief inverse, and we rewrite

(B.6) as:

Ci =

[
In×n −

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′

−

(
exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)2

− . . .

 1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
+O

(
β2
)

=

(
In×n −

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)

1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
+O

(
β2
)
. (B.8)

To conclude the second approximation step, we define

C∗∗i =

(
In×n −

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)

1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
(B.9)
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Plugging (B.8) into the jump exposures from Equation (6) and rewriting them in matrix

notation yields:

JEXPi = exp

{
LIn×1,i +

1− θ−1
θ (1− exp {K (1− γ)})− exp {−K γ}

1− κ− 1
ki,1

β′ 1

−exp {−K γ} (exp {L} − 1)

1− κ− 1
ki,1

β′ In×1,i +O
(
β2
)}
− 1.

Breaking this expression down into the jump exposures JEXPi,j yields:

JEXPi,j =

 exp
{
Ci ·
∑n

k=1,k 6=i βk,j +Di · βi,j +O
(
β2
)}
− 1 for j 6= i

exp
{
L+ Ci ·

∑n
k=1,k 6=i βk,i +Di · βi,i +O

(
β2
)}
− 1 for j = i

=

{
exp

{
Ci · spcj + Ci · βj,j + (Di − Ci) βi,j +O

(
β2
)}
− 1 for j 6= i

exp
{
L+ Ci · spci +Di · βi,i +O

(
β2
)}
− 1 for j = i

where

Ci =
1− θ−1

θ [1− exp {K (1− γ)}]− exp {−K γ}
1− κ− 1

ki,1

Di =
1− θ−1

θ [1− exp {K (1− γ)} − exp {L−K γ}]
1− κ− 1

ki,1

Di − Ci =
exp {−K γ} (1− exp {L})

1− κ− 1
ki,1

.

Note that 1
ki,1

> 1 − κ (see above). For γ > 1, 0 < κ < 1, and − log(2) < K < 0, we have Ci > 0.

Additionally assuming θ < 0, we obtain Di < 0, and Di − Ci < 0.

Proof that Ci > 0: We rewrite Ci as follows:

Ci =
1− θ−1

θ [1− exp {K (1− γ)}]− exp {−K γ}
1− κ− 1

ki,1

=
exp {−K γ}

[
1
θ (exp {K γ} − 1) + exp {K} − 1

]
1− κ− 1

ki,1

Here, we have 1−κ− 1
ki,1

< 0 by assumption (since 0 < κ < 1). Moreover, we have exp {−K γ} > 0

and 1
θ (exp {K γ} − 1) + exp {K} − 1 < 0.

To see the last inequality, define

f (K) = exp {K γ} − 1− (exp {K}+ γ) (exp {K} − 1)

= exp {K γ} − 1− exp {2K} − γ exp {K}+ exp {K}+ γ
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Then f (0) = 0 and

f ′ (K) = γ exp {K γ} − 2 exp {2K} − γ exp {K}+ exp {K}

= γ (exp {K γ} − exp {K}) + exp {K} − 2 exp {2K}

If γ > 1 and − ln (2) < K < 0, then f ′ (K) < 0 which implies f (K) > 0. In particular,

exp {K γ} − 1

exp {K} − 1
< exp {K}+ γ < −θ

from where the statement then follows. Altogether, we thus get Ci > 0.

Proof that Di < 0: We rewrite Di as follows:

Di =
1− θ−1

θ [1− exp {K (1− γ)}]− exp {L−K γ}
1− κ− 1

ki,1

=
1
θ + exp {−K γ}

[(
1− 1

θ

)
exp {K} − exp {L}

]
1− κ− 1

ki,1

Again, we have 1− κ− 1
ki,1

< 0. Moreover, we have

1

θ
+ exp {−K γ}

[(
1− 1

θ

)
exp {K} − exp {L}

]
> 0

⇔ exp {−K γ}
[(

1− 1

θ

)
exp {K} − exp {L}

]
> −1

θ

⇔
(

1− 1

θ

)
exp {K}+

1

θ
exp {K γ} − exp {L} > 0

⇔ (exp {K} − exp {L}) +
1

θ
(exp {K γ} − exp {K}) > 0

which is true if L < K, γ > 1 and θ < 0. This completes the proof.

B.3. Approximation quality

In this section, we assess the quality of the first-order approximations derived in the Propositions 1

and 2. More precisely, we compare those against the results from the numerical solution of the model

using the empirical network for H = 4 determined in Section 2 and the following parametrization.

For the representative investor, we assume a relative risk aversion γ = 10, an intertemporal elasticity

of substitution ψ = 1.5, and a subjective time discount rate δ = 0.02. The expected growth rate µ

and the jump size K1 = . . . = K14 of log aggregate consumption are set equal to 0.02 and -0.004. For

the industry cash flows, the expected growth rates µ1 = . . . = µ14 and the jump sizes L1 = . . . = L14

are chosen to be 0.02 and -0.04. With respect to the stochastic jump intensities, we assume mean

reversion speeds of κ1 = . . . = κ14 = 0.85 and mean reversion levels of ¯̀
1 = . . . = ¯̀

14 = 0.05.
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As explained in Appendix B.1, MPJR∗∗ is based on two approximation steps, B∗ and B∗∗.

The left part of Figure 1 shows the result of the first approximation step graphically by plotting B∗

against the exact solution B of Equation (4). The middle part shows similar results for the second

approximation step, B∗∗ given in Equation (B.4). Finally, the right part of Figure 1 depicts the full

approximation of the market prices of risk MPJR∗∗ against the exact MPJR.

Regressing B∗ (or B∗∗, resp.) on B yields the following parameter estimates, t-stats, R2, and

correlations:

B∗i = −0.0003 + 0.8993 Bi + ui,

(−8.5) (125.3)
R2 = 0.9992, Corr = 0.9996

B∗∗i = −0.0015 + 0.2524 Bi + ui,

(−41.1) (28.2)
R2 = 0.9848, Corr = 0.9924.

Performing a similar regression of MPJR∗∗ on MPJR gives:

MPJR∗∗i = −0.0377 + 0.2576 MPJRi + ui,

(−40.4) (27.7)
R2 = 0.9848, Corr = 0.9924.

Altogether, we see from the figures that the first approximation step hardly affects the B coefficients

at all. The second approximation step (approximating the Leontief inverse) changes all coefficients

quantitatively, but not qualitatively. The ordering of the coefficients is preserved, the sign is pre-

served, the correlation between approximated and exact coefficients is 99%. Only the size and the

dispersion is reduced.

Similarly, JEXP∗∗ is based on two approximation steps, C∗ and C∗∗, and its approximation

quality is shown in Figures 2. The corresponding regressions yield

C∗i = −0.0054 + 0.9578 Ci + ui,

(−59.8) (390.3)
R2 = 0.9970, Corr = 0.9985.

C∗∗i = −0.0036 + 0.7668 Ci + u,

(−24.1) (53.6)
R2 = 0.9879, Corr = 0.9939.

JEXP∗∗i = −0.0010 + 0.7665 JEXPi + ui,

(−10.7) (53.9)
R2 = 0.9884, Corr = 0.9942.

Again, we see that the second approximation step is more severe than the first one. However, it

does not change the coefficients qualitatively. The ordering of the coefficients as well as the sign

are preserved and the correlation between approximated and exact coefficients is 99%.
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C. Eigenvector centrality

Let the network matrix β be diagonalized as follows:

β = S · diag (φ1, . . . , φn) · S−1, (C.1)

where the φi’s are the eigenvalues, ordered by absolute size, the columns of S are the eigenvectors

of β, and the rows of S−1 are the eigenvectors of the transposed matrix β′ (usually all normalized

to have unit length). The eigenvector centrality of node i is defined as the i-th entry of the first

column vector in S (the so-called principal eigenvector), i.e, evci = Si,1.22 Loosely speaking, a node

has a high eigenvector centrality when it is linked to many other nodes, to other central nodes, or

both.

Both evc and spc are approximations, condensing the entire network matrix into one value

per node. Although evc can also be viewed as a “directed measure”, in the sense that it changes

when the network matrix is transposed, we view spc as the more natural quantity when it comes

to capturing directedness in the context of our model for the following reason. An approximation

of our equilibrium asset pricing results using evc would combine the principal eigenvectors of both

β and β′, hence mixing up the impact of incoming and outgoing links. To see this, let evci denote

the eigenvector centrality of node i, and let evc′i denote the eigenvector centrality of node i based

on the transposed matrix β′. Defining the approximation β∗∗∗ of β via

β∗∗∗ := S · diag (φ1, 0, . . . , 0) · S−1,

i.e., replacing all non-principal eigenvalues by 0, one can easily show that

β∗∗∗ = φ1 ·


evc1 evc′1 . . . evc1 evc′n

...
. . .

...

evcn evc′1 . . . evcn evc′n

 .

spc, on the other hand, offers a straightforward interpretation of directedness, given the additive

structure of our model with mutually exciting processes.

22Further technical details about the construction of eigenvector centrality are given in Online Ap-
pendix C.6.
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Panel A: Univariate regressions on spc

Sharpe ratios Return volatilities Average excess returns

spc 8.1778∗∗ -4.4060∗∗∗ -0.3203
[ 2.46] [-4.14] [-1.15]

const. 14.8382∗∗∗ 7.1776∗∗∗ 1.0972∗∗∗

[16.03] [17.44] [13.59]
R̄2 0.2236 0.4039 0.0162

Panel B: Bivariate regressions on spc and evc

Sharpe ratios Return volatilities Average excess returns

spc 8.1778∗∗∗ -4.4060∗∗∗ -0.3203
[ 2.83] [-4.40] [-1.42]

evc -4.0006 -3.2633∗∗ -0.7237∗∗

[-0.57] [-2.03] [-1.96]
const. 14.8382∗∗∗ 7.1776∗∗∗ 1.0972∗∗∗

[17.38] [17.96] [15.57]
R̄2 0.1759 0.4328 0.0848

Table 1
Cross-sectional regressions on spc and evc

The table reports the results of cross-sectional regressions of Sharpe ratios, return volatilities, and

average excess returns of the 14 industry portfolios on their shock propagation capacity (spc) and

eigenvector centrality (evc). Within the portfolios, returns are value-weighted. Both network mea-

sures are obtained from Diebold and Yilmaz (2014) H-quarter generalized variance decompositions

for H = 4, applied to log industry earnings growth rates over the sample from 1966-Q2 to 2014-Q4,

i.e., 686 observations in total. spc is defined in Equation (3), evc in Equation (C.1). In bivariate

regressions, we orthogonalize evc with respect to spc. Numbers in square brackets denote t-stats

adjusted for cross-sectional heteroskedasticity. Statistical significance at the 1%, 5%, and 10% level

is indicated by ∗∗∗, ∗∗, and ∗, respectively.
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A. Star networks: Exact formulas

1. Shock propagation capacity

Theoretically appealing special cases can be constructed by assuming sparse beta matrices, the

most prominent examples being the so-called “star networks” which we are going to analyze in

the following. These networks feature a classic core-periphery structure. They are motivated by

the theoretical analysis in Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) and illustrated

graphically in Figure A.1.

The economy here consists of n industries, i.e., there are n equity claims (“assets”). Asset

(industry) 1 is labeled “core asset” because it is linked to all other assets in the economy. Assets

2 to n are called “periphery assets” because they are linked only to the core asset, but to none of

the other periphery assets.

We distinguish two versions of such star networks which differ with respect to the direction

of the links. In the “outward star” (superscript “OS”), shocks can propagate from the core asset

to the periphery asset, but not the other way around. Vice versa, in the “inward star” (superscript

“IS”), shocks can only propagate from the periphery assets to the core asset. The two networks can

be represented using the following two beta matrices

βOS =


0 0 · · · 0

βper,core 0 · · · 0
...

...
. . .

...

βper,core 0 · · · 0

 , βIS =


0 βcore,per · · · βcore,per

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 . (A.1)

Since these matrices are sparse, we can show the basic effects of shock propagation on jump expo-

sures, local return volatilities, market prices of jump risk, and local expected excess returns.

In particular, the general formula

spcj =

n∑
i=1
i 6=j

βi,j (A.2)

simplifies for the two special cases to

spcOS
core = (n− 1) · βper,core spcOS

per = 0

spcIScore = 0 spcISper = βcore,per.
(A.3)
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2. Market prices of jump risk

In the two stylized star networks, we can derive model predictions for market prices of risk and

jump exposures in closed form.

Proposition 1. Assume that γ > 1, θ < 0, K1 = . . . = Kn = K < 0, κ1 = . . . = κn = κ,

0 < κ < 1, and kv,1 >
1

1−κ . Then, in the outward and the inward star network, the market prices

of risk for jumps in the cash flows of shock-propagating assets are increasing (in absolute values)

in these assets’ spc:

∂|MPJROS
core|

∂spccore
> 0

∂|MPJRIS
per|

∂spcper
> 0.

The market prices of risk for jumps in the cash flows of non-propagating assets are independent of

the spc of any asset:

MPJROS
per = 1− exp {−γ K}

MPJRIS
core = 1− exp {−γ K}

and they are lower (in absolute terms) than the market prices of jump risk for the corresponding

shock-propagating assets:

|MPJROS
per | < |MPJROS

core|

|MPJRIS
core| < |MPJRIS

per|.

A proof is given in Online Appendix B.

The market prices of jump risk are in general negative: a negative cash flow shock increases

the risk of subsequent shocks to the cash flows of the other assets and to aggregate consumption

and therefore leads to an increase in the pricing kernel. By definition, the market price of jump risk

is the negative of this pricing kernel response to the jump. When we refer to the market price of

risk being increasing in spc, such a statement is meant to refer to the absolute value of the market

price of risk.

In the outward star network, the intuition behind this result is that shocks to the core asset

increase all periphery jump intensities, so these shocks are the most “systematic” in the sense that

they affect the whole economy and the distribution of future consumption growth the most. Shocks

to the periphery assets do not spill over to other assets and hence do not have an additional effect

on the wealth-consumption ratio. This can also be seen from the expressions for the market prices

3
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of risk given above which simplify to

MPJROS
core = 1− exp

{
−γ K + kv,1 (θ − 1) Bper spc

OS
core

}
MPJROS

per = 1− exp
{
−γ K + kv,1 (θ − 1) Bcore spc

OS
per

}
= 1− exp {−γ K}

in the outward star network. As already noted above, kv,1 > 0. Moreover, θ − 1 is negative if the

representative agent has a preference for early resolution of uncertainty. Bper captures the response

of the wealth-consumption ratio to the jump intensity of one of the (assumed identical) periphery

assets. It is negative for the given parameters, since the wealth-consumption ratio is decreasing in

all jump intensities, due to the fact that higher jump intensities imply higher future consumption

risk. Altogether, shocks to the core asset have the highest (in absolute terms) market price of risk,

and this market price of risk is increasing in absolute terms (i.e., becoming more negative) in the

core asset’s spc.

In the inward star network, the analogous intuition applies, but the other way around. The

market prices of jump risk are given as

MPJRIS
core = 1− exp

{
−γ K + kv,1 (θ − 1) Bper spc

IS
core

}
= 1− exp {−γ K}

MPJRIS
per = 1− exp

{
−γ K + kv,1 (θ − 1) Bcore spc

IS
per

}
.

Cash flow shocks in the periphery can spread to the core and this makes them more systematic,

implying a higher (i.e., more negative) market price of risk.

Altogether, market prices of jump risk in these two star networks are thus increasing in

shock propagation capacity. Finally, note that the result documented here hinges critically on the

assumption of a preference for early resolution of uncertainty. In an economy with CRRA preferences

(θ = 1), the wealth-consumption ratio does not enter the pricing kernel, state variable risk is not

priced, and the market prices of jump risk are the same for all jump processes.

3. Return volatilities

For return volatilities in the IS and OS network, we have the following result.

Proposition 2. Assume that γ > 1, θ < 0, K1 = . . . = Kn = K < 0, L1 = . . . = Ln = L < 0,

κ1 = . . . = κn = κ, 0 < κ < 1, and kcore,1 >
1

1−κ . Then in the outward and inward star networks,

conditional on the jump intensities `j and assuming that `1 = . . . = `n, the local return volatilities

of shock-propagating assets are decreasing in their spc:

∂|RVolOS
core|

∂spccore
< 0

∂|RVolISper|
∂spcper

< 0.

4
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A proof is given in Online Appendix B.

To get the intuition behind this result, note that in a pure jump model like ours, the local

return volatility of asset j, RVolj , is given as

RVolj =

√√√√ n∑
i=1

`i JEXP2
j,i, (A.4)

and thus depends on two components: the conditional jump intensities `i and the (squared) expo-

sures to jumps.1 We want to focus on the exposure effect because this is an equilibrium pricing

effect that endogenously arises within the model, whereas the dynamics of jump intensities are

exogenous. Therefore the following analysis is performed conditional on the current values of the

`i and assuming that `1 = . . . = `n.

As shown in Online Appendix B, the local return volatility of the core asset in the outward

star network can be written as

RVolOS
core =

√√√√√`core

eL+kcore,1 Ccore,per spcOS
core − 1︸ ︷︷ ︸

JEXPcore,core

2

.

It is decreasing in the core asset’s shock propagation capacity spccore. The reason is that, given

positive kcore,1 and Ccore,per and negative L, a larger (and positive) spcOScore makes the exponent

less negative and thus the expression in square brackets smaller in absolute terms. The coefficient

Ccore,per measures the reaction of the price-to-cash flow ratio of the core asset to changes in the

jump intensity of one of the periphery assets. Ccore,per is in general positive due to the hedging effect

described above.2 When the jump intensity of one of the periphery assets increases, the core asset

becomes relatively less risky compared to the periphery, and therefore its equilibrium price-to-cash

flow ratio goes up.

Symmetrically, we find that in the inward star network the local return volatility of the

periphery asset decreases in its shock propagation capacity. For this special network structure, the

return volatility simplifies to

RVolISper =

√√√√√√`per

eL+kper,1 Cper,core spcISper − 1︸ ︷︷ ︸
JEXPper,per

2

+ (n− 2) `other per

ekper,1 Cper,core spcISother per − 1︸ ︷︷ ︸
JEXPper,other per


2

where spcother per denotes the spc of the other periphery assets. The first square under the square

root is the dominating term, so that the result of the return volatility decreasing in spc follows

1In the remainder of this section, we suppress the time index to simplify the notation.

2A proof that Ccore,per > 0 for reasonable parameter choices is given in Online Appendix B.
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from an argument analogous to the one presented for the OS case above. In particular, Cper,core is

positive in the inward star network.

To sum up, in both star networks the local return volatility of an asset is decreasing in its

own shock propagation capacity.

B. Proof of Propositions 1 and 2

The two stylized cases of the outward star and the inward star network are represented by the

sparse beta matrices

βOS =


0 0 · · · 0

βper,core 0 · · · 0
...

...
. . .

...

βper,core 0 · · · 0

 , βIS =


0 βcore,per · · · βcore,per

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 . (B.1)

In the “outward star” (superscript “OS”), shocks can propagate from the core asset to the periphery

asset, but not the other way around. In the “inward star” (superscript “IS”), it is exactly the other

way around.

We obtain for the market prices of risk and jump exposures in the star networks:

MPJROS
core = 1− exp

{
−γ K + kv,1 (θ − 1) Bper spc

OS
core

}
MPJROS

per = 1− exp
{
−γ K + kv,1 (θ − 1) Bcore spc

OS
per

}
= 1− exp {−γ K}

MPJRIS
core = 1− exp

{
−γ K + kv,1 (θ − 1) Bper spc

IS
core

}
= 1− exp {−γ K}

MPJRIS
per = 1− exp

{
−γ K + kv,1 (θ − 1) Bcore spc

IS
per

}
(B.2)
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and

JEXPOS
core,core = exp

{
L+ kcore,1Ccore,per spc

OS
core

}
− 1

JEXPOS
per,core = exp

{
kper,1Cper,per spc

OS
core

}
− 1

JEXPOS
core,per = 0

JEXPOS
per,per = exp {L} − 1

JEXPOS
per,other per = 0

JEXPIS
core,core = exp {L} − 1

JEXPIS
per,core = 0

JEXPIS
core,per = exp

{
kcore,1Ccore,core spc

IS
per

}
− 1

JEXPIS
per,per = exp

{
L+ kper,1Cper,core spc

IS
per

}
− 1

JEXPIS
per,other per = exp

{
kper,1Cper,core spc

IS
other per

}
− 1.

To prove the propositions, it is therefore sufficient to show that (i) in the outward star network the

coefficients Bper, Ccore,per, and Cper,per do not depend on spcOS
core, (ii) in the inward star network the

coefficients Bcore, Cper,core, and Ccore,core do not depend on spcISper, and (iii) to determine the signs

of these coefficients.

To see (i) and (ii) for the outward star, one has to plug the sparse beta matrices given in

Equation (B.1) into the following Equations (A.4) and (A.10) from the Appendix of the main text:

0 = K′ χy − θ (1− kv,1) B + l′1 [% (χy)− 1]

0 = K′ χy,i + (1− θ) (1− kv,1) B − (1− ki,1) Ci + l′1 [% (χy,i)− 1] .

For the coefficients Bcore and Bper in the outward star, this results in the system of equations

0 = −κ θ kv,1Bcore − θ (1− kv,1) Bcore + exp

{
−K θ

(
1

ψ
− 1

)
+ θ kv,1Bper spc

OS
core

}
− 1

0 = −κ θ kv,1Bper − θ (1− kv,1) Bper + exp

{
−K θ

(
1

ψ
− 1

)}
− 1. (B.3)

Assuming that the linearization coefficient kv,1 is given exogenously and independent of spcOS
core, the

solution Bper does not depend on spcOS
core. The previous assumption is justifiable, since the method

of Eraker and Shaliastovich (2008) works independent of the particular point of expansion in the

Campbell-Shiller loglinearization, and so we essentially assume the point of expansion to be held

constant throughout this section. Moreover, rearranging Equation (B.3) as

Bper =
1

θ

exp {(1− γ) K} − 1

1− kv,1 (1− κ)
,

7
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one can see that Bper < 0 for the given parameter choices γ > 1, θ < 0, K < 0, 0 < κ < 1, and

kv,1 >
1

1−κ

For the inward star, we obtain

0 = −κ θ kv,1Bcore − θ (1− kv,1) Bcore + exp

{
−K θ

(
1

ψ
− 1

)}
− 1

0 = −κ θ kv,1Bper − θ (1− kv,1) Bper + exp

{
−K θ

(
1

ψ
− 1

)
+ θ kv,1Bcore spc

IS
per

}
− 1.

Based on arguments analogous to those above we conclude that Bcore < 0.

For the coefficients Ci,j we obtain the following set of equations in the outward star network:

0 = (−1 + kcore,1 − κ kcore,1) Ccore,core − κ+ (1− θ) (1− kv,1 + κ kv,1) Bcore

+ exp
{
kcore,1Ccore,per spc

OS
core − (1− θ) kv,1Bper spc

OS
core − γK

}
− 1

0 = (−1 + kper,1 − κ kper,1) Cper,core + (1− θ) (1− kv,1 + κkv,1) Bcore

+ exp {kper,1 [Cper,per βcore,per + (n− 2)Cper,other per βcore,per] + βcore,per

− (1− θ) kv,1Bper spc
OS
core − γK

}
− 1

0 = (−1 + kcore,1 − κ kcore,1) Ccore,per + (1− θ) (1− kv,1 + κ kv,1) Bper + exp {−γ K} − 1

0 = (−1 + kper,1 − κ kper,1) Cper,per − κ+ (1− θ) (1− kv,1 + κ kv,1) Bper + exp {−γ K} − 1

0 = (−1 + kper,1 − κ kper,1) Cper,other per + (1− θ) (1− kv,1 + κ kv,1) Bper + exp {−γ K} − 1

which leads to the conclusion that Ccore,per, and Cper,per do not depend on spcOS
core when the

Campbell-Shiller coefficients ki,1 and kv,1 are exogenous. Moreover, the third equation, reformu-

lated as

Ccore,per =
(1− θ) [1 + kv,1 (κ− 1)] Bper + exp {−γK} − 1

1 + kcore,1 (κ− 1)

=
1−θ
θ [exp {−K (γ − 1)} − 1] + exp {−γK} − 1

1− kcore,1 (1− κ)

reveals that Ccore,per > 0 because 1−θ
θ ≈ −1 for the given preference parameters.

8
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Similarly, for the inward star network, we have the system

0 = (−1 + kcore,1 − κ kcore,1) Ccore,core − κ+ (1− θ) (1− kv,1 + κ kv,1) Bcore + exp {−γ K} − 1

0 = (−1 + kper,1 − κ kper,1) Cper,core + (1− θ) (1− kv,1 + κ kv,1) Bcore + exp {−γ K} − 1

0 = (−1 + kcore,1 − κ kcore,1) Ccore,per + (1− θ) (1− kv,1 + κ kv,1) Bper

+ exp
{
kcore,1Ccore,core spc

IS
per + spcISper − (1− θ) kv,1Bcore spc

IS
per − γ K

}
− 1

0 = (−1 + kper,1 − κ kper,1) Cper,per − κ+ (1− θ) (1− kv,1 + κ kv,1) Bper

+ exp
{
kper,1Cper,core spc

IS
per + spcISper − (1− θ) kv,1Bcore spc

IS
per − γ K

}
− 1

0 = (−1 + kper,1 − κ kper,1) Cper,other per + (1− θ) (1− kv,1 + κ kv,1) Bper

+ exp
{
kper,1Cper,core spc

IS
per + spcISper − (1− θ) kv,1Bcore spc

IS
per − γ K

}
− 1,

whose solutions Cper,core and Ccore,core do not depend on spcISper. Similar to the outward star, we

also see from the second equation that Cper,core > 0 since Bcore < 0.

In a pure jump model like ours, the local return volatilities are given by

RVolj =

√√√√ n∑
i=1

`i JEXP2
j,i.

In the sparse star networks, this expression becomes

RVolOS
core =

√√√√√`core

eL+kcore,1 Ccore,per spcOS
core − 1︸ ︷︷ ︸

JEXPcore,core

2

RVolISper =

√√√√√√`per

eL+kper,1 Cper,core spcISper − 1︸ ︷︷ ︸
JEXPper,per

2

+ (n− 2) `other per

ekper,1 Cper,core spcISother per − 1︸ ︷︷ ︸
JEXPper,other per


2

From the discussion above, we know that the relevant coefficients Ccore,per in the outward star and

Cper,core in the inward star are both negative and independent from the spc’s, which concludes the

proof.
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C. Empirical illustration

1. Data on industry earnings

In the following, we perform several illustrative exercises to present suggestive empirical evidence for

the theoretical channels outlined in Section 2 of the main paper. We start by constructing quarterly

time series of industry earnings following Irvine and Pontiff (2009). The sample comprises all firms

in the CRSP/Compustat merged (CCM) fundamentals quarterly database from 1966-Q2 to 2014-

Q4. In principle, the data is available from 1964 onwards, but before 1966-Q2 not all industries are

represented in the sample. We work with firms’ earnings per share (item EPSPXQ) and require

a firm to have at least four consecutive data entries to be included in our sample. Following the

procedure outlined in Irvine and Pontiff (2009), we winsorize the EPS data.

Based on the NAICS code dictionary from the Bureau of Economic Analysis, we sort in each

quarter firms into 15 industry portfolios as in Menzly and Ozbas (2010). Following Aobdia, Caskey,

and Ozel (2014), and Menzly and Ozbas (2010), we exclude the government sector. We multiply

firms’ earnings per share by the number of shares to obtain total earnings, sum up the total earnings

across all firms in a given industry, and divide by the number of firms in that industry to account

for variation over time. We then calculate log earnings growth rates for each industry.3 We adjust

each time series for seasonality using the method proposed in Hamilton (2018).4 Eventually, we

end up with a time series of 49 log earnings growth rates for each of the 14 industries, i.e., 686

quarterly observations in total.

2. Measurement of directed cash flow links

Having constructed quarterly industry earnings time series allows us to estimate the directed earn-

ings network following the procedure proposed by Diebold and Yilmaz (2014).5 The first step is to

estimate a 14-dimensional VAR(1) process based on our earnings growth time series:
z1,t

...

z14,t

 =


φ1
...

φ14

+


φ1,1 . . . φ1,14

...
. . .

...

φ14,1 . . . φ14,14




z1,t−1
...

z14,t−1

+


ε1,t

...

ε14,t

 .
From the coefficient matrix φ and the covariance matrix of the shocks ε, we compute generalized

variance decompositions of quarterly earnings with a forecast horizon of H = 1, 2, 3, 4 quarters.

3We follow Lochstoer and Tetlock (2018) and winsorize log earnings growth rates at log (0.01) when
earnings growth rates are below -0.99.

4Running a Dickey and Fuller (1979) test on each resulting time series, we can reject the null hypothesis
of a unit root at the 1% significance level.

5We thank Francis Diebold and Kamil Yilmaz for sharing their code.
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We denote the fraction of H-quarter forecast error variance of industry i’s earnings explained by

shocks in industry j’s earnings by dHi,j . This gives us a 14× 14 matrix (dHi,j)i,j=1,...,14, which Diebold

and Yilmaz (2014) refer to as the connectedness table. In the following, this matrix serves as our

empirical network matrix at the cash flow level.

There is no clear guidance towards the optimal choice of the forecast horizon H. As doc-

umented by Diebold and Yilmaz (2014), a very short horizon produces noisy estimates, but the

estimates stabilize with longer horizons. Diebold and Yilmaz (2014), thus, choose H = 12 days for

their daily stock return data. We find similar, albeit weaker, effects of the forecast horizon in our

estimation and, therefore, report results for H = 1, 2, 3, 4 quarters in the following.

Figure C.1 presents graphical illustrations of the estimated networks, where the arrowheads

mark outgoing links. This helps to visually identify the industries with high spc in the graphs.

From the graphs, one can see the similarity of the networks for the different forecast horizons of

H = 1, . . . , 4 quarters.

From the empirical network matrix, we compute the shock propagation capacity spcHj for

industry j and horizon H analogous to Equation (3) from the main text as

spcHj =
N∑
i=1
i 6=j

dHi,j . (C.1)

Diebold and Yilmaz (2014) call this measure total directional connectedness to others from j.

Table C.1 provides the spc’s of the 14 industries. Most importantly, one can see that there

is a significant cross-sectional dispersion in spc at all horizons, so that this variable indeed has

the potential to explain cross-sectional variation in asset pricing moments. In terms of important

industries with high values for spc, manufacturing, wholesale trade, and utilities are at the top of

the list for H = 1, and this ranking is stable across the four horizons. In contrast, cash flow shocks

to construction and agriculture, forestry, fishing, and hunting seem to be less important for the rest

of the economy.
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Figure C.1
Empirical cash flow networks for different forecast horizons H

The pictures show the empirical cash flow networks obtained from Diebold and Yilmaz (2014)

H-quarter generalized variance decompositions for H = 1, . . . , 4, applied to quarterly log industry

earnings growth rates over the sample from 1966-Q2 to 2014-Q4, i.e., 686 observations in total.

Arrowheads mark outgoing links. The thickness of a link corresponds to the size of the respective

entry. Diagonal entries of the connectivity matrix are disregarded. The industries are listed in

Online Appendix D.
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Industry Forecast horizon
H = 1 H = 2 H = 3 H = 4

Agriculture, forestry, fishing, hunting 0.0560 0.1012 0.1061 0.1068
Mining 0.2895 0.3147 0.3237 0.3247
Utilities 0.3637 0.4185 0.4189 0.4186
Construction 0.0599 0.1548 0.1679 0.1720
Manufacturing 0.3584 0.5740 0.6330 0.6482
Wholesale trade 0.4326 0.5272 0.5273 0.5271
Retail trade 0.0782 0.2277 0.2450 0.2497
Transportation and warehousing 0.3175 0.3679 0.3744 0.3753
Information 0.1560 0.2300 0.2517 0.2554
Finance, insurance, real estate, . . . 0.0448 0.0906 0.0998 0.1027
Professional and business services 0.1584 0.2861 0.3003 0.3022
Educational services, health care, . . . 0.0780 0.1384 0.1445 0.1452
Arts, entertainment, accommodation, . . . 0.1473 0.1388 0.1383 0.1382
Other services 0.0980 0.1375 0.1414 0.1415

Mean 0.1884 0.2648 0.2766 0.2791
Standard deviation 0.1350 0.1573 0.1643 0.1663

Table C.1
Shock propagation capacities

The table shows the shock propagation capacity (spc) for 14 industries. spc is obtained from Diebold

and Yilmaz (2014) H-quarter generalized variance decompositions for H = 1, 2, 3, 4 applied to log

industry earnings growth rates over the sample from 1966-Q2 to 2014-Q4, i.e., 686 observations in

total. spc is calculated according to Equation (C.1). Graphical representations of the networks are

shown in Figure C.1.
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3. Cross-sectional performance of shock propagation capacity

Having estimated the network of cash flow linkages, we now illustrate the performance of spc in a

cross-sectional asset pricing exercise. The data is from the CRSP securities monthly database and

covers exactly the sample used for the cash flow network estimation. We assign firms to industry

portfolios based on their NAICS code and form value-weighted industry portfolios accordingly.

For each industry portfolio, we calculate three variables over the whole sample, which serve

as dependent variables in our regressions. The average excess return of an industry portfolio is the

mean of the difference between its log return and the log three-month Treasury bill return. Return

volatilities are calculated as the standard deviations of log returns. Sharpe ratios are computed as

average excess returns divided by return volatilities. The numbers are shown in Table C.2.

The Sharpe ratio of an industry serves as a proxy for the market price of risk for cash flow

shocks of the respective industry, MPJR, because these market prices of risk are not observable

empirically. Recall from Equation (9) of the main text that the expected excess return on asset i

is given as

1

dt
E [dRi]− r =

n∑
j=1

`j JEXPi,j MPJRj .

The i-th summand is by the far the largest on the right-hand side, since JEXPi,i is the only exposure

containing the direct cash flow effect represented by the jump size L. The expected excess return

of an asset is thus mostly driven by the response of its price and of the pricing kernel to its own

cash flow shocks. Therefore we use the Sharpe ratio of asset i as a proxy for MPJRi and the return

volatility as a proxy for JEXPi,i.

Table C.3 reports the main results from this empirical exercise. Each of the three panels shows

four univariate cross-sectional regressions, where the explanatory variables are the industry shock

propagation capacities, determined using the empirical procedure outlined above, with forecast

horizons of H = 1, 2, 3, 4 quarters. The dependent variables are return volatilities, Sharpe ratios,

and average excess returns.6

First, the coefficients in the Sharpe ratio regressions are positive and significant forH = 2, 3, 4,

and the R2’s are large. This is also in line with Proposition 1, that shocks to the cash flows of high

spc industries carry a large market price of risk, which manifests itself in high Sharpe ratios for

these industries.

Second, the coefficients in the return volatility regressions are all negative and significant at

the 1% level, and the adjusted R2’s are high for all forecasting horizons. This negative connection

is in line with Proposition 2 which states that high spc assets have smaller jump exposures that

translate into lower return volatilities.

6Although one of the three regressions is redundant, we report all three for the sake of completeness.
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Industry Sharpe ratio Return
volatility

Average
excess return

Agriculture, forestry, fishing, hunting 0.1609 0.0635 0.0102
Mining 0.1351 0.0665 0.0090
Utilities 0.1459 0.0409 0.0060
Construction 0.1559 0.0773 0.0121
Manufacturing 0.2236 0.0470 0.0105
Wholesale trade 0.2070 0.0509 0.0105
Retail trade 0.1853 0.0557 0.0103
Transportation and warehousing 0.1784 0.0565 0.0101
Information 0.1888 0.0507 0.0096
Finance, insurance, real estate, . . . 0.1699 0.0557 0.0095
Professional and business services 0.1563 0.0546 0.0085
Educational services, health care, . . . 0.1693 0.0765 0.0130
Arts, entertainment, accomodation,. . . 0.1842 0.0679 0.0125
Other services 0.1362 0.0691 0.0094

Table C.2
Descriptive statistics for industry portfolio returns

The table presents descriptive statistics for the returns of 14 value-weighted industry portfolios. The

average excess return of an industry portfolio is the mean of the difference between its log return

and the log three-month Treasury bill return. Return volatilities are calculated as the standard

deviations of log returns. Sharpe ratios are computed as average excess returns divided by return

volatilities. The data is from the CRSP securities monthly database and covers the sample from

April 1966 to December 2014.
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const. H = 1 H = 2 H = 3 H = 4 R̄2

Sharpe ratios

15.9158∗∗∗ 6.3940 0.0404
[20.46] [ 1.24]

14.9951∗∗∗ 8.0267∗∗ 0.1811
[15.78] [ 2.10]

14.8668∗∗∗ 8.1489∗∗ 0.2143
[15.91] [ 2.37]

14.8382∗∗∗ 8.1778∗∗ 0.2236
[16.03] [ 2.46]

Return volatilities

6.8792∗∗∗ -4.9428∗∗∗ 0.3208
[16.73] [-3.16]
7.1838∗∗∗ -4.6676∗∗∗ 0.4057
[16.87] [-4.05]
7.1831∗∗∗ -4.4660∗∗∗ 0.4055
[17.30] [-4.13]
7.1776∗∗∗ -4.4060∗∗∗ 0.4039
[17.44] [-4.14]

Average excess returns

1.0999∗∗∗ -0.4888 0.0695
[16.06] [-1.38]
1.1052∗∗∗ -0.3677 0.0340
[13.64] [-1.22]
1.0994∗∗∗ -0.3311 0.0206
[13.59] [-1.17]
1.0972∗∗∗ -0.3203 0.0162
[13.59] [-1.15]

Table C.3
Cross-sectional regressions on spc

The table reports the results of cross-sectional regressions of Sharpe ratios, return volatilities, and

average excess returns of the 14 industry portfolios on their shock propagation capacity (spc). Re-

turns within a portfolio are value-weighted. To obtain spc, we perform Diebold and Yilmaz (2014)

H-quarter generalized variance decompositions for H = 1, 2, 3, 4 and calculate spc as given in Equa-

tion (C.1). Numbers in square brackets denote t-stats adjusted for cross-sectional heteroskedasticity.

Statistical significance at the 1%, 5%, and 10% level is indicated by ∗∗∗, ∗∗, and ∗, respectively.
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Third, the coefficients in the average excess return regressions are insignificant for all hori-

zons. These results are also in line with our theoretical findings. The effects of spc on the market

price of jump risk and on price exposures have opposite signs, so that the overall effect of spc on

expected excess returns cannot be uniquely determined in general within the model. Hence, the

role of directedness in equilibrium can only be assessed appropriately when the two opposing effects

described above are disentangled.

Finally, the coefficients in the Sharpe ratio and return volatility regressions are not only

statistically, but also economically significant. For H = 2, the standard deviation of spc is around

0.16. Thus, with a coefficient for spc in the Sharpe ratio regression of around 8.03, a one-standard-

deviation difference in spc leads to a difference in Sharpe ratios of roughly 8.03 · 0.16 ≈ 1.27

percentage points monthly. Similarly, a one-standard-deviation difference in spc gives rise to a

difference in return volatilities of about −4.67 · 0.16 ≈ −0.74 percentage points per month.

4. Empirical spc versus model-generated spc

The empirics above rely on generalized variance decompositions of cash flows to estimate the

structure of the underlying network, whereas the model features connectivity in a network at the

jump intensity level. We now show that the connectivity and directedness information from the

empirically estimated cash flow network is indeed a close representation of the underlying intensity

network.

To this end, we perform the following simulation exercise for each forecast horizon H =

1, 2, 3, 4. We plug the empirically estimated connectivity matrix (for the cash flows) as the beta

matrix (for the jump intensities) into our model which we then multiply with 1
2 to make sure that

the stationarity condition (A.7) from the Appendix of the main text holds. The remaining model

parameters are taken from Table C.4. Then we simulate 10,000 years of cash flows with monthly

increments and run the procedure suggested by Diebold and Yilmaz (2014) on simulated log cash

flow growth rates, exactly as we do with the empirical data, resulting in an estimate for the network

matrix based on simulated data cash flows. From this, we compute the spc values for the different

industries and compare them to the corresponding values based on the empirical network matrix

that we had plugged into the model initially.

Table C.5 presents correlations between the two spc vectors. One can see that the two network

matrices are very similar with respect to the spc values they generate, with correlations of 0.75 or

higher. Furthermore, it is especially relevant in the context of our empirical analysis that sorting

industries on spc delivers roughly the same ordering for cash flow-based and intensity-based network

matrices.
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Investors
Relative risk aversion γ 10
Intertemporal elasticity of substitution ψ 1.5
Subjective discount rate δ 0.02

Aggregate consumption
Expected growth rate of log aggregate consumption µ 0.02
Jump size of log aggregate consumption K1 = . . . = K14 -0.004

Industry cash flows
Expected growth rates of log cash flows µ1 = . . . = µ14 0.02
Jump sizes of log cash flows L1 = . . . = L14 -0.04

Stochastic jump intensities
Mean reversion speeds κ1 = . . . = κ14 0.85
Mean reversion levels ¯̀

1 = . . . = ¯̀
14 0.05

Table C.4
Model Parameters

The table reports the parametrization of our model. The beta matrix is determined empirically

using the approach described in Section C.2 of the Online Appendix.

5. Regressions in model-generated data

In Section 4 of the Online Appendix, we show that applying the Diebold and Yilmaz (2014) estima-

tion method to simulated data, preserves the ordering of industries with respect to spc. As a final

step and to further corroborate that the empirical procedure is in line with the intuition behind

the theoretical model, we now analyze whether the regression results from Section 3 also carry over

to model-generated data.

We start from the simulated path for H = 3 over a period of 10,000 years with monthly

increments from the previous section.7 Using these 14 industry cash flow time series, we compute

spc by applying the Diebold and Yilmaz (2014) methodology exactly as in the data. Again the

forecast horizons are H = 1, 2, 3, 4 quarters. Unconditional Sharpe ratios, return volatilities, and

average excess returns are computed from the simulated monthly return time series exactly like

their empirical counterparts in Section 3 of the Online Appendix. Table C.6 reports these results.

As one can see, the analyses based on simulated and empirical data produce qualitatively similar

results for Sharpe ratios (positive coefficients) and for return volatilities (negative coefficients for

spc).

7For the sake of brevity, we report the results for this sample path only. The results using the paths for
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Forecast horizon
H = 1 H = 2 H = 3 H = 4

correlation 0.85 0.81 0.87 0.66
rank correlation 0.82 0.85 0.90 0.75

Table C.5
Empirical spc versus model-generated spc

The table reports correlations and rank correlations between empirically estimated and model-

generated shock propagation capacities. The model-generated values are obtained from simulated

data using the empirically estimated network matrix as an input. The procedure is described in

detail in Section C.4 of the Online Appendix. We calculate spc as given in Equation (C.1).

The coefficients for all regressions are much larger in Table C.6 than in Table C.3. The reason

is that the values for spc are smaller in model-generated than in empirical data. The diagonal entries

of the beta matrix are by definition not included when we compute spc according to Equation (3)

from the main text. So a comparably smaller value for spc in the model-generated data shows that

self excitation, represented by the diagonal elements of the beta matrix, is more pronounced in

model-generated than in empirical data. In the real world, shocks are also spread via potentially

diffusive channels (which are not present in our model for the sake of parsimony) and this can

increase the relative size of the shocks passed on to other industries, making the diagonal elements

of the empirical network matrix smaller and the off-diagonal elements, and thus also spc, larger.

With the given parameters, the model produces only weakly significant coefficients in the

regressions for unconditional average excess returns forH = 2, 3, 4, whereas in our empirical analysis

we basically found no impact of spc on risk premia. However, given our discussion concerning the

two opposing directions in which spc impacts exposures (negatively) and market prices of risk

(positively) in the model, the results for average excess returns in Table C.6 could simply mean

that the positive effect of spc on the market prices of risk weakly dominates in the simulated

economy, whereas the two effects more or less seem to offset each other in the empirical data.

In summary, the analysis generates results which are overall in line with our results from

Propositions 1 and 2. Hardly surprising, however, our very stylized model does not match the

unconditional volatility of the U.S. stock market (reflecting the well-documented excess volatility

puzzle), as indicated by the low values for the constants in the return volatility regressions in

Table C.6. In principle, it would be possible to include additional features, but this would unnec-

essarily complicate the solution of the model and shift the focus away from the clear theoretical

results derived above.8

H = 1, 2, 4 are qualitatively similar.

8One way to generate stock return volatilities in the model that are closer to their empirical counterparts
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const. H = 1 H = 2 H = 3 H = 4 R̄2

Unconditional Sharpe ratios

0.0026∗∗∗ 4.9670 -0.0705
[ 1.45] [ 0.45]
0.0010∗∗∗ 6.6106∗∗∗ 0.0522
[ 0.73] [ 2.97]
0.0010∗∗∗ 6.6073∗∗∗ 0.0527
[ 0.72] [ 2.98]
0.0010∗∗∗ 6.6073∗∗∗ 0.0527
[ 0.72] [ 2.98]

Unconditional return volatilities

0.9091∗∗∗ -904.7605∗∗∗ 0.2432
[17.98] [-2.84]
0.9629∗∗∗ -533.6300∗∗∗ 0.5922
[25.64] [-4.96]
0.9631∗∗∗ -532.1669∗∗∗ 0.5917
[25.59] [-4.95]
0.9631∗∗∗ -532.1604∗∗∗ 0.5917
[25.59] [-4.95]

Unconditional average excess returns

0.0023∗∗∗ 0.7408 -0.0828
[ 1.68] [ 0.09]
0.0012∗∗∗ 3.2697∗ -0.0183
[ 1.14] [ 1.78]
0.0012∗∗∗ 3.2711∗ -0.0179
[ 1.13] [ 1.78]
0.0012∗∗∗ 3.2712∗ -0.0179
[ 1.13] [ 1.78]

Table C.6
Cross-sectional regressions on spc in model-generated data

The table reports the results from cross-sectional regressions of model-generated Sharpe ratios,

return volatilities, and average excess returns of 14 assets on their shock propagation capacity

(spc). As beta matrix, we use the empirical network determined in Online Appendix C.2 for a

forecast horizon of H = 3 quarters. The remaining parameters are given in Table C.4. Given the

model solution, we run a Monte Carlo simulation over 10,000 years with monthly time increments.

From the simulated data, we compute Sharpe ratios, return volatilities, and average excess returns.

To obtain spc, we apply Diebold and Yilmaz (2014) H-quarter generalized variance decompositions

to simulated log cash flow growth rates for H = 1, 2, 3, 4 and calculate spc as in Equation (C.1).

Statistical significance at the 1%, 5%, and 10% level is indicated by ∗∗∗, ∗∗, and ∗, respectively.
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6. Eigenvector centrality

We start by providing some technical details on eigenvector centrality in the context of our model.

First, we derive the eigenvector centralities from the empirical network matrix with the diagonal

elements set to zero. The reason is that the entries of the network matrix resulting from the Diebold

and Yilmaz (2014) generalized variance decomposition method represent percentage shares, so that

the row sums are all equal to 1. The principal eigenvalue of such a matrix is equal to 1, and the

associated eigenvector is a (multiple of a) vector of ones. Hence all the nodes in the network would

be assigned the same eigenvector centrality if we used the full matrix with diagonal elements.

Second, even with diagonal elements set to zero, evc is well-defined. According to the Perron-

Frobenius theorem, to guarantee that there exists a positive principal eigenvalue with an associated

positive principal eigenvector, the matrix has to be positive, i.e., has to have only positive elements.

An extension of the Perron-Frobenius Theorem states that any nonnegative matrix (i.e., a matrix

with all entries ≥ 0) has a positive principal eigenvalue and a positive principal eigenvector if it

is an irreducible matrix. A matrix is called irreducible if it cannot be rearranged as a block upper

triangular matrix by permutations of rows and columns. In network terms, this means that the

network must be strongly connected, i.e., every node is reachable from every other node. Since our

empirical approach yields such an irreducible network matrix with only positive entries (except for

the diagonal entries which we set to 0), the extended Perron-Frobenius theorem applies, and evc is

well-defined.

Table C.7 reports the values of evc for the 14 industries. The cross-sectional dispersion in evc

is similar to spc. Tables C.9, C.8, and C.10 present the results of regressions analogous to those

shown in Table C.3, but now with evc as additional regressor. For the bivariate regressions, we

orthogonalize evc with respect to spc to quantify the additional explanatory power of this measure

beyond spc.9

The new regressions yield several interesting findings. The univariate regressions for Sharpe

ratios in Table C.8 show that evc has no explanatory power, while spc remains robustly significant

across all horizons. In the return volatility regressions in Table C.9, evc can explain the cross-section

of return volatilities for industry portfolios. When combined with spc, however, the orthogonalized

version of evc is insignificant for H = 1, but it seems to have explanatory power beyond spc for

H = 2, 3, 4. In the bivariate regressions, the coefficient for spc is significant for all horizons. Finally,

in the regressions for average excess returns in Table C.10, evc yields negative and significant

coefficients at the 10% level, while spc is not significant both in the univariate and in the bivariate

regressions. Overall, we conclude that our theoretically motivated measure of directedness spc

would be to introduce persistent diffusion processes representing, e.g., stochastic volatility of consumption
growth.

9In Section C.7 of the Online Appendix, we also compare spc to a symmetrified version of eigenvector
centrality that has been proposed in the literature recently.
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indeed contains additional information above and beyond the information captured by centrality

measures like evc.
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Industry Forecast horizon
H = 1 H = 2 H = 3 H = 4

Agriculture, forestry, fishing, hunting 0.0581 0.0689 0.0707 0.0713
Mining 0.2680 0.2869 0.2877 0.2870
Utilities 0.4577 0.3808 0.3773 0.3769
Construction 0.0847 0.0888 0.0928 0.0938
Manufacturing 0.4083 0.3425 0.3311 0.3297
Wholesale trade 0.4859 0.4038 0.4089 0.4097
Retail trade 0.0774 0.1680 0.1688 0.1687
Transportation and warehousing 0.3575 0.4039 0.3989 0.3981
Information 0.2623 0.4355 0.4365 0.4366
Finance, insurance, real estate, . . . 0.0415 0.0629 0.0652 0.0655
Professional and business services 0.1878 0.1950 0.2102 0.2126
Educational services, health care, . . . 0.0757 0.0802 0.0788 0.0784
Arts, entertainment, accommodation, . . . 0.1583 0.1341 0.1316 0.1310
Other services 0.1870 0.1796 0.1852 0.1863

Mean 0.2222 0.2308 0.2317 0.2318
Standard deviation 0.1542 0.1399 0.1382 0.1380

Table C.7
Eigenvector centrality

The table reports eigenvector centrality (evc) for the 14 industries in our sample. The network

measure is obtained from Diebold and Yilmaz (2014)H-quarter generalized variance decompositions

for H = 1, 2, 3, 4 applied to log industry earnings growth rates over the sample from 1966-Q2 to

2014-Q4, i.e., 686 observations in total. evc is calculated according to Equation (C.1) from the

Appendix of the main paper. Graphical representations of the networks are shown in Figure C.1.
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7. Symmetrified eigenvector centrality

In this section, we compare our theoretically motivated measure spc to a symmetrified version

of eigenvector centrality proposed by Ahern (2013), which we label symevc. To compute it in

the context of our model, we construct a new network matrix βsym by setting βsymi,j = βsymj,i =

max{βi,j , βj,i}. From this new matrix, obviously representing an undirected network, we then again

compute the eigenvector centralities of the n nodes.

Ahern (2013) works with data from the BEA input-output tables, and these tables contain

many zero entries. Symmetrifying these sparse network matrices makes them irreducible so that the

extended Perron-Frobenius theorem applies, and symevc is well-defined. In our empirical procedure,

we do not face this irreducibility problem because our empirical network matrix does not contain

zeros, but we document the results for symevc to link our paper to the existing literature. For the

same reason, we compute symevc based on the network matrix with diagonal entries, in particular

since the problem pointed out above (that the row sums are all equal to 1) does not apply to the

symmetrified matrix.

Table C.11 reports the values of symevc for the 14 industries. The cross-sectional dispersion

in symevc is smaller relative to evc and spc. Tables C.13, C.12, and C.14 then present the results of

regressions analogous to those shown in Table C.3, but now with symevc as additional regressors.

For the bivariate regressions, we orthogonalize symevc with respect to spc to quantify the additional

explanatory power of these measures beyond spc.

The univariate regressions for return volatilities in Table C.13 show that symevc yields neg-

ative and significant coefficients for all horizons, albeit the results are weaker than for evc. When

combined with spc, however, the orthogonalized version of symevc does not have additional ex-

planatory power beyond spc, which itself remains significant for all horizons. In the Sharpe ratio

regressions (Table C.12), symevc is significant as a single regressor (except for H = 1) but the

parts of this measure not already captured by spc fail to deliver additional explanatory power. At

the same time, spc remains robustly significant across all horizons. Finally, in the regressions for

average excess returns (Table C.14), symevc has no explanatory power. Both in the univariate and

in the bivariate regressions, spc is not significant.
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Industry Forecast horizon
H = 1 H = 2 H = 3 H = 4

Agriculture, forestry, fishing, hunting 0.2183 0.1807 0.1796 0.1790
Mining 0.2778 0.2631 0.2645 0.2642
Utilities 0.3191 0.2995 0.2874 0.2850
Construction 0.2354 0.2502 0.2525 0.2529
Manufacturing 0.2989 0.3752 0.3999 0.4056
Wholesale trade 0.3264 0.3099 0.3006 0.2991
Retail trade 0.2299 0.2585 0.2633 0.2651
Transportation and warehousing 0.2876 0.3006 0.3014 0.3019
Information 0.2813 0.2777 0.2814 0.2821
Finance, insurance, real estate, . . . 0.2068 0.1713 0.1753 0.1767
Professional and business services 0.2642 0.3058 0.2976 0.2944
Educational services, health care, . . . 0.2307 0.2293 0.2200 0.2178
Arts, entertainment, accommodation, . . . 0.2562 0.2063 0.2024 0.2011
Other services 0.2755 0.2379 0.2305 0.2285

Mean 0.2649 0.2619 0.2612 0.2610
Standard deviation 0.0370 0.0554 0.0589 0.0599

Table C.11
Symmetrified eigenvector centrality

The table reports symmetrified eigenvector centrality (symevc) for the 14 industries in our sample.

The network measure is obtained from Diebold and Yilmaz (2014) H-quarter generalized variance

decompositions for H = 1, 2, 3, 4 applied to log industry earnings growth rates over the sample from

1966-Q2 to 2014-Q4, i.e., 686 observations in total. symevc is calculated as described in Section C.7

of the Online Appendix.
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D. Industries

We use the industry codes in the Industry Economic Accounts provided by the Bureau of Economic

Analysis (BEA) at the sector level.10 These are based on the North American Industry Classification

System (NAICS) code structure and contain 15 groups of industries. Following Menzly and Ozbas

(2010) and Aobdia, Caskey, and Ozel (2014), we exclude the government sector. We refer to the 14

industries in our network graphs in Figure C.1 as:

1. Ag: Agriculture, forestry, fishing, and hunting;

2. Mi: Mining;

3. Ut: Utilities;

4. Co: Construction;

5. Ma: Manufacturing;

6. Wh: Wholesale trade;

7. Re: Retail trade;

8. Tr: Transportation and warehousing;

9. In: Information;

10. Fi: Finance, insurance, real estate, rental, and leasing;

11. Pr: Professional and business services;

12. Ed: Educational services, health care, and social assistance;

13. Ar: Arts, entertainment, recreation, accommodation, and food services;

14. Ot: Other services, except government.

10Available at the BEA homepage (https://bea.gov/industry/io_annual.htm).
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