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Non-Technical Summary 

 
Optimal tax and transfer systems are key for the design of modern economics. One of the 
workhorse models used by economists to evaluate the welfare benefits of (reforms to) these 
systems is the life-cycle model of consumption and savings. The model can, e.g., be used to 
investigate the reactions of households to savings subsidies or any other kind of reform to old-age 
insurance, or, more general, any institutional feature of the tax-transfer system. 
 
Yet, from a quantitative perspective, it is well known that the standard model produces several 
“puzzles” in a sense that the standard model cannot match certain facts in the data. It is well 
established that, relative to an optimal saving rate according to the model, households save too 
little in the data. Furthermore, the decumulation speed of assets in old-age is much lower in the 
data than predicted by the standard model. Finally, households behave dynamically inconsistent, 
in a sense that they generally save less during working life for retirement than they originally 
planned. Such inconsistencies cannot be accommodated by the standard model. 
 
In order to generate correct quantitative predictions it is therefore important to modify the 
standard model in order to account for these three empirical regularities. This is the aim of the 
present paper.   
 
The specific model element under investigation is the life-expectancy of households which is one 
of the most important ingredients of the model. Obviously, survival beliefs are of high relevance 
for savings behavior. The standard model uses objective data on survival beliefs, traced out from 
population wide survival tables. However, in several datasets that explicitly ask for subjective 
survival beliefs, substantial biases in survival beliefs relative to such objective data can be 
observed. E.g., young people strongly underestimate whereas old people (after retirement) strongly 
overestimate their chances to survive into the future.  
 
This paper addresses the question how these biases in survival beliefs may alter model savings 
behavior, thereby bringing model predictions closer to the data on household savings. On the one 
hand, underestimation of survival beliefs may lead to lower savings than in the standard model. 
On the other hand, overestimation in old-age may lead to the fact that households hold on to their 
assets longer in life than predicted by the standard model. 
 
To test whether the observed biases in survival beliefs have quantitatively important implications 
for the household model, we proceed in two steps.  First, we develop a model of survival belief 
formation. We base our model on a decision theoretic framework which enables us to be explicit 
about psychological effects such as optimism, pessimism and doubt. A parsimonious 
representation of survival beliefs enables us to match pessimism with regard to survival for young 
and optimism for old households, as in the data on subjective survival beliefs. Furthermore, 



households continuously update their survival beliefs as they age in light of objective information 
towards which they express doubt. Second, we combine this model with an otherwise standard 
household life-cycle consumption-savings model. We analytically derive conditions under which 
this combination gives rise to less savings and a lower speed of asset accumulation, just as 
observed in the data. Furthermore, we show that the continuous updating of survival beliefs 
combined with our notion of doubt leads to dynamically inconsistent household behavior. We also 
show that a calibrated version of our model indeed matches well the key trends of asset 
accumulation and decumulation as observed in the data.  
 
Therefore, our model kills three birds (=undersaving, too little asset decumulation and dynamic 
inconsistency) with one stone (=a model of survival beliefs with psychological biases).  
 
Our results are of high relevance for future research because they show that biases in survival 
beliefs have strong implications for household savings. An immediate policy implication is that 
households must be provided with appropriate information about their survival prospects. 
Specifically, young households tend to underestimate the improvements to survival by medical 
progress. This may lead to too little old-age provision. 
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Abstract

Based on a cognitive notion of neo-additive capacities reflecting likelihood in-

sensitivity with respect to survival chances, we construct a Choquet Bayesian

learning model over the life-cycle that generates a motivational notion of neo-

additive survival beliefs expressing ambiguity attitudes. We embed these neo-

additive survival beliefs as decision weights in a Choquet expected utility life-cycle

consumption model and calibrate it with data on subjective survival beliefs from

the Health and Retirement Study. Our quantitative analysis shows that agents

with calibrated neo-additive survival beliefs (i) save less than originally planned,

(ii) exhibit undersaving at younger ages, and (iii) hold larger amounts of assets

in old age than their rational expectations counterparts who correctly assess their

survival chances. Our neo-additive life-cycle model can therefore simultaneously

accommodate three important empirical findings on household saving behavior.
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1 Introduction

Recent empirical findings on household saving behavior are puzzling for the standard

rational expectations (RE) life-cycle consumption model à la Modigliani and Brum-

berg (1954) and Ando and Modigliani (1963). For example, Laibson et al. (1998) and

Bernheim and Rangel (2007) report large gaps between self-reported behavior and self-

reported plans. People save less for retirement than actually planned (Choi et al. 2006;

Barsky et al. 1997; Lusardi and Mitchell 2011). They behave in a dynamically incon-

sistent manner. Furthermore, people hold large amounts of assets still late in life and

dissave less in old age than predicted by the standard RE life-cycle model (see, e.g., Love

et al. 2009; De Nardi et al. 2010; Lockwood 2014). Among many underlying assump-

tions the standard RE life-cycle model describes survival beliefs as objective survival

probabilities. In this paper we ask whether the assumption of ambiguous rather than

objective survival beliefs may jointly accommodate the aforementioned saving puzzles.

As a novelty of our approach, we derive these ambiguous survival beliefs from a model

of Bayesian learning with cognitive limitations.

Our approach comprises of two buildings blocks. As our first building block, we

develop a model of Choquet Bayesian learning of survival beliefs which allows for like-

lihood insensitivity. Likelihood insensitivity is a well-documented cognitive limitation

according to which people do not properly understand probabilities but rather over-

(resp. under-) estimate small (resp. large) probabilities.1 Our second building block

combines Choquet expected utility maximization with respect to learned survival beliefs

with a canonical life-cycle model. We calibrate this model with data on survival beliefs

taken from the Health and Retirement Study (HRS) and asset data taken from the Sur-

vey of Consumer Finances (SCF). Our quantitative analysis investigates in how far our

calibrated life-cycle model is able to accommodate the aforementioned saving puzzles.

Central to both building blocks are non-additive probability measures in the form

of neo-additive capacities (Chateauneuf et al. 2007). Neo-additive capacities are empir-

ically and theoretically very attractive because they stand for a well-interpreted (and,

in some sense, minimal) deviation from the standard concept of additive probability

measures to which they add two parameters only.2 While our point of departure is a

1In rank dependent utility theory this cognitive limitation corresponds to an inverse-S shaped map-

ping from additive probabilities to probability judgments whereby “fifty-fifty” probability judgments

represent an extreme form of likelihood insensitivity. For a survey of the according decision-theoretic

and psychological literature see Wakker (2010).
2Due to their technical convenience neo-additive capacities are often used to approximate the typical

inverse S-shape of (cognitive) probability judgments and (motivational) decision weights elicited for

rank-dependent utility theories (e.g., Abdellaoui et al. 2011; for a survey on this literature see Wakker

2010). Moreover, Choquet decision making with respect to neo-additive capacities could be equivalently
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cognitive notion of neo-additive capacities reflecting likelihood insensitivity of a represen-

tative Bayesian learner, we later employ a motivational notion of neo-additive capacities

expressing ambiguity as well as ambiguity attitudes (in the form of relative optimism)

of a representative decision maker. As a distinctive feature of our modelling approach,

these motivational neo-additive capacities are not imposed ad hoc but comprehensively

derived from our Choquet Bayesian learning model.

We now describe in detail the steps of our analysis. As a starting point of our first

building block we extend earlier work in Ludwig and Zimper (2013) and construct a

model of Choquet Bayesian learning which describes the decision maker’s uncertainty

about the joint distribution of the parameter and sample space of survival chances

through a cognitive neo-additive capacity. Updating of beliefs takes place in accordance

with the Generalized Bayesian update (GBU) rule (Eichberger et al. 2007). A first cogni-

tive parameter of this neo-additive capacity reflects likelihood insensitivity. The second

cognitive parameter determines in how far this likelihood insensitivity is resolved rather

through over- or underestimation of additive probabilities. To combine neo-additive ca-

pacities with the GBU rule is appealing because it implies that likelihood insensitivity

is increasing with age whereas over-/underestimation attitudes remain constant. Our

preferred interpretation of increasing likelihood insensitivity is that older people become

increasingly cognitively impaired. In contrast, we regard over-/underestimation atti-

tudes as a personal characteristic of an individual. I.e., we think of “exaggerating”vs.

“downplaying”perceived survival chances as character traits that remain constant over

the life-cycle.3

Under simplifying assumptions, we derive a closed-form expression for the Choquet

estimates of survival chances such that they only depend on the agent’s age. Next,

we demonstrate that these age-dependent Choquet estimates can themselves be rein-

terpreted as motivational neo-additive capacities defined on the space of the decision

maker’s survival events. The formal relationship between the cognitive parameters of

the neo-additive capacities entering our learning model (i.e., likelihood insensitivity;

over-/underestimation attitudes) and the motivational parameters of the age-dependent

neo-additive survival beliefs generated by our learning model (i.e., degree of ambiguity;

relative optimism) is surprisingly complex. For example, even in absence of likelihood

insensitivity– i.e., even when the cognitive neo-additive capacities entering our learn-

ing model reduce to additive probability measures– the decision maker’s motivational

neo-additive survival beliefs only become additive in the limit of the learning process

formalized within the multiple priors framework of Ghirardato et al. (2004).
3Eichberger et al. (2012) provide a related argument in favor of combining (motivational rather than

cognitive) neo-additive capacities with the GBU rule in terms of constant ambiguity attitudes.
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where they resemble objective survival probabilities. In contrast, in presence of likeli-

hood insensitivity, the motivational neo-additive survival beliefs that are generated by

our learning model do not converge to additive probability measures.

Turning to our second building block we construct a “NEO life-cycle consumption

model”according to which an ex ante representative agent maximizes her Choquet ex-

pected utility4 over her uncertain future consumption streams. As the only deviation

from the RE benchmark we assume that agents take as decision weights the motivational

neo-additive survival beliefs generated by our learning model. Whenever our NEO agents

do not converge to RE agents, life-cycle maximization gives rise to dynamically incon-

sistent behavior regardless of how much statistical information has been observed. We

describe both ‘naive’and ‘sophisticated’NEO agents. While the former do not antici-

pate that their future selves deviate from ex ante optimal consumption plans, the latter

are fully aware of their dynamically inconsistent behavior.

Our quantitative analysis investigates in how far our NEO life cycle model(s) could

partially resolve saving puzzles. To this purpose we compare consumption and saving

behavior for three different models: the naive NEO, the sophisticated NEO, and the

nested RE life-cycle model, respectively. We calibrate these stochastic quantitative life-

cycle models to the data. For the NEO life-cycle model(s) we use data on subjective

survival beliefs from the Health and Retirement Study (HRS) for the estimation of

the neo-additive survival beliefs; for the survival beliefs of the RE life-cycle model we

use (projected) objective mortality rates. With the exception of the discount rate, we

determine all parameters outside the life-cycle models. We estimate the discount rate

through a Simulated Methods of Moments (SMM) technique by minimizing the distance

of life-cycle asset holdings between the model and the data (taken from the Survey of

Consumer Finance, SCF) for each model version thereby giving each model the same

chance to match the data on asset holdings.

In line with the existing literature, the calibrated RE life-cycle model gives rise to

the typical puzzles: The average saving rate for prime age savers of age 25 − 54 is

at 12.5%, compared to 9.5% in the data. Average asset holdings at ages 75, 85 and 95

relative to asset holdings at the average retirement age of 62 are 68.8%, 35.6% and 8.5%,

compared to 71.9%, 53.4% and 46.7% in the data. Hence, through the lens of the RE

life-cycle model, the data are puzzling: in the data the young save too little and the old

decumulate assets too slowly.

In contrast, the calibrated naive NEO life-cycle model partially resolves these puzzles.

The average saving rate is at 10.7% and relative asset holdings at ages 75, 85 and 95

4For axiomatic foundations of Choquet expected utility theory for the Anscombe-Aumann framework

see Schmeidler (1989) and for the Savage framework see Gilboa (1987).
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are at 78.1%, 57.9% and 36.9%, remarkably close to the data. In addition, the realized

saving rate is 5.2 percentage points lower than the planned saving rate. Predictions on

asset holdings for the sophisticated NEO life-cycle model are similar. Sophisticated NEO

agents save a bit more than naive NEO agents and hence feature higher asset holdings in

old age whereas the overall fit to the data is better for naive than for sophisticated NEO

agents. Our analysis therefore suggests that the naive NEO life-cycle model provides a

quite accurate quantitative picture of saving behavior until about age 85.

The intuition for these quantitative findings is as follows. The calibrated survival

probabilities match the HRS findings that “young”people– before age 65-70– underestimate

whereas “old” people– older than 70– overestimate their survival chances.5 Underes-

timation at young age is suffi ciently strong so that naive NEO agents save less than

their RE counterparts. In the course of the life-cycle overestimation of future survival

chances lowers the speed of asset decumulation to the effect that the level of old age asset

holdings is eventually higher than for RE agents. For middle aged agents, this overesti-

mation is not too strong so that they end up saving less in each period than originally

planned in the past.6 Importantly, neither the relative strengths of these biases in sur-

vival beliefs nor relatively low young age, respectively high old age, asset holdings are

direct targets in our calibration. Finally, sophisticated NEO agents correctly anticipate

the more optimistic beliefs of their future selves therefore saving more than their naive

counterparts.

The standard model to explain dynamic inconsistency and undersaving is the hyper-

bolic time-discounting model. Building on the early work by Strotz (1955) and Pollak

(1968) as well as on Laibson (1997), Laibson et al. (1998) find that exponential con-

sumers save more than hyperbolic consumers, cf. also Angeletos et al. (2001). This

standard model cannot account for high old-age asset holdings because long-run dis-

counting is identical to the rational expectations model. In contrast, over-estimating

beliefs for low probabilities in our NEO life-cycle model(s) implies lower long-run effec-

tive discount rates which leads to higher old-age asset holdings. Standard explanations

for insuffi cient old-age asset decumulation such as a bequest motive (Hurd 1989; Lock-

wood 2014) and precautionary savings behavior (Palumbo 1999; De Nardi et al. 2010)

cannot generate undersaving at young ages. Our NEO life-cycle model therefore adds

to existing explanations for saving behavior by simultaneously accommodating all three

stylized findings: (i) time inconsistency, (ii) undersaving at young age and (iii) high

asset holdings at old age.

5Similar patterns are observed in numerous other datasets, cf. Ludwig and Zimper (2013) or, for a

literature survey, Nicholls and Zimper (2015).
6If they were to more strongly overestimate future survival rates, then they would resolve their

dynamic inconsistency by actually saving more than originally planned.
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The remainder of this paper is organized as follows. Section 2 constructs our model of

Choquet Bayesian learning over the agent’s life-cycle which is based on a cognitive notion

of neo-additive capacities updated by the GBU rule. In Section 3 we use the resulting

age-dependent Choquet estimators to construct, for all ages, a motivational notion of

neo-additive survival beliefs. Section 4 employs these neo-additive survival beliefs as

decision weights in a multi-period stochastic life-cycle model for Choquet expected utility

maximizers. Calibration is outlined in Section 5. Results of the quantitative analysis

are presented in Section 6. Finally, Section 7 concludes. All propositions are formally

proved in Appendix A. Appendix B describes the construction of the asset data used

for calibration and contains a detailed description of our SMM estimator.

2 Bayesian Learning with Likelihood Insensitivity

We assume that people can be described as Bayesian learners who update, in a Bayesian

fashion, their estimators for the objective probability to survive from k to t, denoted ψk,t,

by incorporating statistical information as they grow older. More specifically, for a fixed

k and t we assume that the agent observes over her ages h ∈ {0, ..., k} a non-decreasing
data sample whose age-dependent sample size e (h) is given by some non-decreasing

experience function

e : {0, ..., k} → N.

This sample contains information about how many out of e (h) individuals have survived

from k to t whereby these individuals have the same independently and identically

distributed survival chances as the representative agent. The interpretation is that this

age-increasing statistical information serves as a proxy for the real-life situation that

people increasingly receive news about the deaths (or critical illnesses) of acquainted

people (or illnesses of themselves) or read increasingly many health studies.

We start out with the formal description of a classical Bayesian learner who is not

subject to the cognitive limitation of likelihood insensitivity in that her uncertainty is

captured by a unique additive probability measure. In a next step, we construct a

neo-additive model of Choquet Bayesian learning that incorporates the possibility of

likelihood insensitivity which is resolved by over-/underestimation attitudes.

2.1 Classical Bayesian Learning

We first consider a classical Bayesian decision maker who satisfies Savage’s (1954) axioms

so that her uncertainty about the joint parameter and sample space is comprehensively
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described by some unique subjective additive probability measure, denoted µ. The

parameter space Θ is given as the Euclidean open interval (0, 1) with Σ (Θ) denoting the

Borel σ-algebra on Θ. The n-dimensional sample space is given as Xn = ×ni=1Xi with

Xi = {0, 1}, for all i, where 1 (resp. 0) captures the event that individual i does (resp.

does not) survive from k to t. Endow each Xi with the discrete topology and denote by

Σ (Xn) the product sigma-algebra of all Borel sigma algebras Σ (Xi), i = 1, ..., n. Define

the infinite sample space X∞ = ×∞i=1Xi with the infinite product σ-algebra Σ (X∞)

and denote by Σ (Θ×X∞) the product σ-algebra of Σ (Θ) and Σ (X∞). To model the

classical Bayesian decision maker we are thus concerned with the additive probability

space (Θ×X∞,Σ (Θ×X∞) , µ).

Consider the Σ (Θ)-measurable random variable θ̃ : Θ×X∞ → (0, 1) such that

θ̃ (θ, x∞) = θ,

where we interpret the value of θ̃ as the true survival probability in any given state of the

world. Next consider the Σ
(
Xe(h)

)
-measurable random variable Ĩe(h) which counts the

number of individuals i ∈ {1, ..., e (h)} who survived from k to t, i.e., Ĩe(h) : Θ×X∞ →
{0, ..., e (h)} such that

Ĩe(h) (θ, x∞) =

e(h)∑
i=1

xi.

We further assume that, conditional on the true parameter value θ̃ = θ, each of the

e (h) individuals have the same probability θ as the representative agent to survive from

k to t where survival is independent across individuals. By this i.i.d. assumption of

individual survivals, Ĩe(h) is, conditional on the true survival probability θ̃ = θ, binomially

distributed with probabilities

µ
(
Ĩe(h) = j | θ

)
=

(
e (h)

j

)
θj (1− θ)e(h)−j for j ∈ {0, ..., e (h)} . (1)

In the absence of any sample information the (marginal) distribution

µ
(
θ̃
)
≡ µ

(
θ̃ ×X∞

)
stands for the agent’s prior about her survival chances so that the agent’s estimator for

her chances to survive from k to t is defined as the (unconditional) expectation

E
[
θ̃, µ

(
θ̃
)]

=

∫
θ∈(0,1)

θdµ
(
θ̃
)
. (2)

In light of random sample information Ĩe(h), however, the agent updates her prior to

the posterior distribution µ
(
θ̃ | Ĩe(h)

)
so that her estimator becomes the (conditional)
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expectation

E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
=

∫
θ∈(0,1)

θdµ
(
θ̃ | Ĩe(h)

)
. (3)

We interpret the (random) Bayesian estimator (3) as the belief of an h-old agent to

survive from age k to age h. Note that consistency results for classical Bayesian estima-

tors establish that the posterior distributions µ
(
θ̃ | Ĩe(h)

)
concentrate almost surely at

the true parameter value (i.e., the objective survival probability ψk,t) if e (h) gets large,

implying7

lim
e(h)→∞

E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
= ψk,t almost surely.

That is, if the classical Bayesian agent receives more and more statistical information

when her age h approaches k, she will learn with certainty her true (=objective) proba-

bility to survive from k to t.

While this limit result holds for general well-specified priors µ
(
θ̃
)
, we are foremostly

interested in an analytically convenient closed-form expression that specifies (3) for any

given Ĩe(h). To this purpose we restrict attention to priors µ
(
θ̃
)
given as some Beta

distribution with parameters α, β > 0, implying E
[
θ̃, µ

(
θ̃
)]

= α
α+β

. That is, we assume

that

µ
(
θ̃ = θ

)
= Kα,βθ

α−1 (1− θ)β−1 ,

where Kα,β = Γ(α+β)
Γ(α)Γ(β)

is a normalizing constant.8 Given the Binomial distribution (1),

we obtain by Bayes’rule the following conditional distribution of θ̃

µ
(
θ̃ = θ | Ĩe(h) = j

)
=

µ
(
Ĩe(h) = j | θ

)
µ (θ)∫

(0,1)
µ
(
Ĩe(h) = j | θ

)
µ (θ) dθ

= Kα+j−1
α+j,β+e(h)−kθ

α+j−1 (1− θ)β+e(h)−j−1 for θ ∈ (0, 1) .

Note that µ
(
θ̃ | Ĩe(h) = j

)
is itself a Beta distribution with parameters α+j, β+e (h)−j.

The agent’s subjective survival belief (3) conditional on information Ĩe(h) = j, j ∈
{0, ..., e (h)}, is thus given as

E
[
θ̃, µ

(
θ̃ | Ĩe(h) = j

)]
=

α + j

α + β + e (h)
(4)

=

(
α + β

α + β + e (h)

)
E
[
θ̃, µ

(
θ̃
)]

+

(
e (h)

α + β + e (h)

)
j

e (h)
.

7Convergence to the true parameter value only occurs if the prior is, as in our case, well-specified, i.e.,

has this true value in its support (the seminal contribution is Doob 1949). For a more general conver-

gence result—including misspecified priors—in terms of minimization of the Kullback-Leibler divergence,

see Berk (1966).

8The gamma function is defined as Γ (y) =
∞∫
0

xy−1e−xdx for y > 0.
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That is, the updated estimator E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
is a weighted average of the agent’s

prior estimator E
[
θ̃, µ

(
θ̃
)]
and the observed fraction j

e(h)
of individuals who survived

from k to t. From (4) the convergence behavior of classical Bayesian estimators to

objective probabilities is easy to see: If the experience function e (h) goes to infinity,

the law of large numbers implies that the fraction j
e(h)

of individuals who have survived

from k to t converges almost surely to the objective survival probability ψk,t whereby this

fraction receives more and more weight because e(h)
α+β+e(h)

converges to one. The Classical

Bayesian learning model therefore implies convergence of all subjective survival beliefs to

objective survival probabilities as the agent gains more experience when growing older.

2.2 Choquet Bayesian Learning

As in the classical Bayesian set-up we consider the measurable space (Θ×X∞,Σ (Θ×X∞))

where Θ × X∞ denotes the joint parameter and sample space. As a generalization of

the Savage decision maker, however, we describe a Choquet Bayesian learner who re-

solves her uncertainty through a unique neo-additive capacity that is updated in ac-

cordance with the GBU rule. The cognitive parameters of these updated neo-additive

capacities govern a model of Bayesian learning over the life-cycle, which is subject to

age-dependent cognitive limitations in the form of increasing likelihood insensitivity. To

incorporate likelihood insensitivity into Bayesian learning over the life-cycle is, in our

opinion, arguably more realistic than the assumption of a classical Bayesian learner to

whom cognitive limitations do not apply.

As our point of departure, let us reformulate the classical Bayesian learning model

of the previous subsection within Choquet decision theory for general conditional non-

additive probabilities. Recall that a non-additive (=not necessarily additive) probability

measure κ : Σ (Θ×X∞)→ [0, 1] has to satisfy normalization and monotonicity; that is,

(i) κ (∅) = 0, κ (Θ×X∞) = 1

(ii) A ⊂ B ⇒ κ (A) ≤ κ (B) for all A,B ∈ Σ (Θ×X∞).

In Choquet decision theory random variables are integrated via the Choquet integral.

Formally, the Choquet integral of a bounded Σ (Θ×X∞)-measurable function f : Θ×
X∞ → R with respect to the capacity κ is defined as the following Riemann integral (cf.
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Schmeidler 1986)9:∫ Choquet

fdκ ≡
∫ 0

−∞
(κ ({(θ, x∞) ∈ Θ×X∞ | f (θ, x∞) ≥ z})− 1) dz (5)

+

∫ +∞

0

κ ({(θ, x∞) ∈ Θ×X∞ | f (θ, x∞) ≥ z}) dz.

In analogy to the classical Bayesian approach, we define by

κ
(
θ̃
)
≡ κ

(
θ̃ ×X∞

)
the agent’s (non-additive) prior about her survival chances and we define the Choquet

estimator for her chances to survive from k to t as the (unconditional) Choquet expec-

tation

E
[
θ̃, κ

(
θ̃
)]

=

∫ Choquet

θ∈(0,1)

θdκ
(
θ̃
)
. (6)

We further define the Choquet estimator in light of sample information Ĩe(h) as the

(conditional) Choquet expectation

E
[
θ̃, κ

(
θ̃ | Ĩe(h)

)]
=

∫ Choquet

θ∈(0,1)

θdκ
(
θ̃ | Ĩe(h)

)
(7)

where κ
(
θ̃ | Ĩe(h)

)
denotes some updated non-additive posterior in light of the sample

information Ĩe(h).

In what follows we specify the Choquet estimator (7) such that the conditional non-

additive probability measure κ
(
θ̃ | Ĩe(h)

)
is given as a cognitive neo-additive capacity

that is updated in accordance with the GBU rule. In addition we impose ad hoc as-

sumptions that greatly simplify our technical analysis.

Cognitive Neo-additive Capacities

Denote by N the set of null events, i.e., N collects all events that the decision maker

deems impossible.

9For an f taking on m different values such that A1, ..., Am is the unique partition of Θ×X∞ with

f ((θ, x∞)1) > ... > f ((θ, x∞)m) for (θ, x∞)i ∈ Ai, the Choquet integral (5) becomes

E [f, κ] =

m∑
i=1

f ((θ, x∞)i) · [κ (A1 ∪ ... ∪Ai)− κ (A1 ∪ ... ∪Ai−1)] ,

which is the familiar method of integrating up some utility function f over gains in rank dependent

utility theories.
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Definition 1. Fix some set of null-events N ⊂ Σ (Θ×X∞) for the measurable space

(Θ×X∞,Σ (Θ×X∞)). The cognitive neo-additive capacity, ν, is defined, for

some δ, λ ∈ [0, 1] by

ν (A) = δ · νλ (A) + (1− δ) · µ (A) (8)

for all A ∈ Σ (Θ×X∞) where µ is some additive probability measure satisfying

µ (A) =

{
0 if A ∈ N
1 if Θ×X∞\A ∈ N

and the non-additive probability measure νλ is defined as follows

νλ (A) =


0 iff A ∈ N
λ else

1 iffΘ×X∞\A ∈ N .

In this paper, we are exclusively concerned with the empty set as the only null event,

i.e., N = {∅}. In this case, the neo-additive capacity ν in (8) simplifies to

ν (A) = δ · λ+ (1− δ) · µ (A)

for all A 6= ∅,Θ×X∞.
The cognitive parameter δ ∈ [0, 1] measures the empirical phenomenon of likelihood

insensitivity. If there is no likelihood insensitivity (δ = 0), ν reduces to the additive

probability measure µ. If there is likelihood insensitivity (δ > 0), the cognitive parameter

λ ∈ [0, 1] measures in how far the agent resolves this likelihood insensitivity with respect

to the additive probability µ of an event A through over- (high values of λ) versus

underestimation (low values of λ) with respect to the additive probability µ (A). In

short, λ measures over-/underestimation attitudes.

The following observation extends a result (Lemma 3.1) of Chateauneuf et al. (2007)

for finite random variables to the more general case of random variables with a bounded

range (cf. Zimper (2012) for a formal proof).

Observation 1. Let f : Θ × X∞ → R be a Σ (Θ×X∞)-measurable function with

bounded range. The Choquet expected value (5) of f with respect to a neo-additive

capacity (8) is then given by

E [f, ν] = δ (λ sup f + (1− λ) inf f) + (1− δ)E [f, µ] .

11



Substituting the neo-additive prior ν
(
θ̃
)
for κ

(
θ̃
)
in (6) gives, by Observation 1,

the following Choquet estimator in the absence of any sample information

E
[
θ̃, ν

(
θ̃
)]

= δ (λ sup θ + (1− λ) inf θ) + (1− δ) · E
[
θ̃, µ

(
θ̃
)]

= δ · λ+ (1− δ) · E
[
θ̃, µ

(
θ̃
)]
.

Obviously, if there is no likelihood insensitivity, i.e., δ = 0, this Choquet estimator

reduces to the classical Bayesian estimator (2) with respect to the additive prior µ
(
θ̃
)
.

Generalized Bayesian Updating

There exist multiple perceivable Bayesian update rules for non-additive probability mea-

sures κ (cf. Gilboa and Schmeidler 1993). We suppose that our Bayesian learner applies

the GBU rule which is defined10 such that, for all non-null A,B ∈ Σ (Θ×X∞),

κ (A | B) ≡ κ (A ∩B)

κ (A ∩B) + 1− κ (A ∪ ¬B)
. (9)

An application of the GBU rule to a neo-additive capacity results in the following char-

acterization of a conditional neo-additive capacity.

Observation 2. If the Generalized Bayesian update rule (9) is applied to the cognitive
neo-additive capacity (8), we obtain, for all non-null A,B ∈ Σ (Θ×X∞),

ν (A | B) = δB · λ+ (1− δB) · µ (A | B) (10)

such that

δB =
δ

δ + (1− δ) · µ (B)
.

Henceforth, we formalize our Choquet Bayesian learning model within the cognitive

neo-additive probability space

(Θ×X∞,Σ (Θ×X∞) , ν (· | ·)) (11)

such that ν (· | ·) satisfies (10). By combining Observations 1 and 2, the Choquet esti-
mator (7) in light of sample information Ĩe(h) becomes

E
[
θ̃, ν

(
θ̃ | Ĩe(h)

)]
= δĨe(h) · λ+

(
1− δĨe(h)

)
· E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
(12)

10The GB update rule has an axiomatic foundation within Choquet decision theory in the form of the

plausible behavioral axioms of Consequentialism and Conditional Certainty Equivalence Consistency.

For details see, e.g., Eichberger et al. (2007) and Siniscalchi (2011).
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where

δĨe(h) =
δ

δ + (1− δ) · µ
(
Ĩe(h)

) (13)

and δĨe(h) = 0 if, and only if, there is no initial ambiguity, i.e., δ = 0.

To see that the cognitive parameters in (12) and (13) behave in accordance with our

preferred interpretation (see the introduction), observe that likelihood insensitivity δĨe(h)
increases with age (formally because the prior probability attached to observing a specific

data-sequence µ
(
Ĩe(h)

)
decreases in the sample-size, i.e., age h, of the observed data)

which captures the notion that older people become increasingly cognitively impaired.

In contrast, the over-/underestimation attitude λ in (12), interpreted by us as character

trait, remains constant over the life-cycle.

Imposing Ad hoc Assumptions

By its very nature, the Choquet estimator (12) is random because it reacts to random

sample information. Our aim is, however, to derive survival beliefs from Choquet esti-

mators in a parsimonious manner. We therefore impose the following two assumptions

to further simply the Choquet estimator (12) to the effect that it becomes constant for

a given age h.

Assumptions. Fix h, k, t such that h ≤ k < t.

A1 The additive measure µ in (10) gives rise to a uniform distribution µ
(
θ̃
)
.

A2 The observed fraction of surviving individuals coincides with the objective survival
probability. That is, for every given e (h),

j = arg min
k∈{0,...,e(h)}

∣∣∣∣ k

e (h)
− ψk,t

∣∣∣∣ , hence we set j

e (h)
≈ψk,t.

Assumption A1 pins down the closed form of the additive estimator E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
since the uniform distribution is the Beta-distribution with parameters α = β = 1. This

assumption implies that– prior to any sample information– the survival chances for all

k, t are identically regarded as “fifty-fifty” chances. Although A1 might appear– at a

first glance– as a rather strong assumption, we use it in the calibration of the model only

to initialize the dynamics at biological birth (biological age of 0). That is, when agents

become economically active in our model, i.e., at the biological age of 20, they have

already gathered some experience according to experience function e(h) which pushes

the posterior beliefs away from the fifty-fifty assessment, cf. Section 5 for further details.

A1 also implies that the parameter δĨe(h) (13) will be constant across all possible sample
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information at a given age h because for a uniform µ
(
θ̃
)
the unconditional probability

µ
(
Ĩe(h)

)
will be identical for every possibly observed sample information Ĩe(h) if h is

fixed.

Assumption A2 is a technical assumption which plays the role of the law of large num-

bers without actually requiring that e (h) is already large for every age h. In particular,

A2 implies that the originally random classical estimator E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
embedded

in (14) becomes deterministic. As one justification of A2 observe that our representative

h-old agent can be considered as the average of many h-old agents who have observed

their own data samples so that even with small values of the experience function e (h)

the average value of the fraction j
e(h)

coincides almost surely with the objective proba-

bility ψk,t. Also note that A2 becomes, by the law of large numbers, rather innocuous

for suffi ciently large values of the experience function e (h).

Proposition 1. Under the Assumptions A1-A2, the h-old agent’s Choquet estimator
for the chance to survive from k to t becomes

E
[
θ̃, ν

(
θ̃ | Ĩe(h)

)]
= δe(h) · λ+

(
1− δe(h)

)
· E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
(14)

such that

E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
=

(
2

2 + e (h)

)
· 1

2
+

(
e (h)

2 + e (h)

)
· ψk,t (15)

and

δe(h) =
δ + e (h) δ

1 + e (h) δ
. (16)

Note that Proposition 1 (proved in Appendix A) pins down a closed form expression

of the Choquet estimator (14) which is no longer random but completely determined by

the parameters δ, λ, and e (h) of our Choquet Bayesian learning model as well as by the

objective survival probability ψk,t.
11

3 Motivational Neo-additive Survival Beliefs

So far we have been concerned with the cognitive neo-additive probability space (11) of

our Choquet Bayesian learning model which captures the agent’s uncertainty about the

joint parameter and sample space for fixed k and t with k < t. By imposing several

11Proposition 1 gives similar long-run dynamics as the learning model developed in Ludwig and

Zimper (2013). There, however, we used an ad hoc assumption on the additive prior beliefs. In

contrast, Proposition 1 derives the entire dynamics in a more rigorous and entirely consistent way.
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assumptions on this learning model, we have derived the closed form expression (14) for

the h-old agent’s Choquet estimator to survive from k to t. In this section, we show

that these Choquet estimators give rise to a unique age-dependent neo-additive capacity

which describes the h-old agent’s ambiguous beliefs to survive from a fixed age k to any

given age t. We refer to these neo-additive survival beliefs as ‘motivational’because

they will enter as decision weights into the Choquet utility maximization problem of our

life-cycle model to be constructed in the following section.

3.1 The Neo-additive Probability Space of Survival Events

To construct a measurable space of survival events, define the finite state space Ω =

{0, 1, ..., T} and denote by F the powerset of Ω. We interpret Dt = {t} , t ∈ Ω as the

event in F that the agent dies at the end of period t where T stands for the maximal
possible age. Define Zt = Dt ∪ ... ∪ DT as the event in F that the agent survives (at

least) until the beginning of period t.

Suppose that there exists an additive probability measure ψ on (Ω,F), which we

interpret as the “objective” survival probability measure. Next define the conditional

additive probability measure ψ (· | Zk) on (Ω,F) which gives the objective probability

of an agent’s survival chances given that she has already survived from age 0 to age k.

Recall that we already denoted by ψk,t the objective probability that a k-old individual

survives from k to t, implying

ψk,t = ψ (Zt | Zk) .

Now observe that the Choquet estimator (14) for the chance to survive from k to t

can be equivalently rewritten as

E
[
θ̃, ν

(
θ̃ | Ĩe(h)

)]
= δhλh + (1− δh)ψk,t (17)

where12

δh =
2 + 3e (h) δ + e (h)2 δ

2 + 2e (h) δ + e (h) + e (h)2 δ
, (18)

λh =
1− δ + 2λδ + 3λe (h) δ + λe (h)2 δ

2 + 3e (h) δ + e (h)2 δ
. (19)

Because ψ (· | Zk) is an additive probability measure on (Ω,F), the Choquet estimators

(17) for different t’s can thus be interpreted as the values νhk (Zt) of a neo-additive

capacity νhk defined on
(
Ω,Fh

)
. This observation gives rise to the central definition

of our paper, which translates our notion of Choquet Bayesian estimators of survival

chances into a motivational neo-additive probability space for survival events.
12It can be shown that 0 ≤ δh ≤ 1 as well as λ ≤ λh ≤ 1

2 if λ ≤
1
2 and

1
2 ≤ λh ≤ λ if λ ≥

1
2 .
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Definition 2. Fix some age h = 1, ..., T and some k ≥ h. Define the motivational

neo-additive probability space
(
Ω,F , νhk

)
such that, for all A ∈ F ,

νhk (A) =


0 if ψ (A | Zk) = 0

δhλh + (1− δh)ψ (A | Zk) else

1 if ψ (A | Zk) = 1

(20)

with parameter δh and parameter λh given by (18) and (19), respectively. For all

h ≤ k < t ≤ T , we call

νhk,t ≡ νhk (Zt) = δhλh + (1− δh)ψk,t (21)

the h-old agent’s ambiguous belief to survive from k to t.

Since we use in Section 4 the neo-additive survival beliefs (21) as decision weights

in a Choquet expected utility maximization problem, we interpret the age-dependent

parameters in (21) as motivational parameters such that δh and λh stand for the degree

of ambiguity and ambiguity attitudes (relative optimism), respectively.13 The following

subsection investigates the formal relationship between these motivational parameters

and the cognitive parameters δ (likelihood insensitivity) and λ (over-/underestimation

attitude).

3.2 Discussion

As our point of departure, we have modeled Choquet Bayesian learning within the neo-

additive probability space

(Θ×X∞,Σ (Θ×X∞) , ν (· | ·)) (22)

such that the conditional neo-additive capacity ν (· | ·) is characterized by the cognitive
parameters δ and λ combined with an application of the GBU rule. In a next step,

we have constructed the survival event spaces
(
Ω,F , νhk

)
such that the neo-additive

capacity νhk, characterized by the motivational parameters δh and λh, is defined as the

h-old agent’s Choquet estimator of the underlying learning model. Consequently, the

motivational parameter values δh and λh are comprehensively pinned down through

equations (18) and (19) by the values of the cognitive parameters δ, λ and the agent’s

age-dependent experience e (h).

To see how the age-conditional neo-additive survival beliefs νhk depend on the specifi-

cation of the underlying Choquet Bayesian learning model let us consider three different

13Later we will interpret λh as a relative optimism parameter because it puts additional decision

weight on the best possible outcome.
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scenarios. First, suppose that there is no initial likelihood insensitivity about the joint

distribution of the parameter- and sample space, i.e., δ = 0. Even for this classical

Bayesian learning model with an additive probability measure µ, the agent’s survival

beliefs νhk will not be additive except for the limiting case in which she receives an

infinite amount of statistical information.

Observation 3. Fix the neo-additive joint parameter and sample space (11) for some
k such that δ = 0.

(i) For any value of the experience function e (h) < ∞, the neo-additive survival
belief νhk does not reduce to an additive probability measure because we have

a strictly positive ambiguity parameter

δh =
2

2 + e (h)
> 0.

(ii) As the values of the experience function e (h) get large, the neo-additive sur-

vival beliefs νhk,t converge to the objective probabilities ψk,t.

Hence, the RE model is nested as a special limit case for δ = 0 and e(h)→∞, i.e.,
there is no likelihood insensitivity and the agent observes an unlimited amount of data.

As a second scenario, suppose now that there is initial likelihood insensitivity in

the Choquet Bayesian learning model but that there is no age-dependent learning. In

this “static”scenario, the agent’s neo-additive survival beliefs thus remain constant over

all ages so that, for all h, e (h) = n for some n ∈ N . Note that the age-independent

neo-additive capacity can be interpreted as the transformation of the objective sur-

vival probability by a neo-additive probability weighting function. Bleichrodt and Eeck-

houdt (2006) as well as Halevy (2008) already consider non-additive survival beliefs

where some age-independent probability weighting function is applied to an additive

survival probability. Since this static scenario is nested within our general notion (21)

as a special case, it is straightforward to investigate the sensitivity of our results with

regard to this feature of the model, cf. Section 6.2.2.

We do not believe in the plausibility of the static model because it would be in stark

contrast to our everyday experience according to which people receive more and more

information about survival chances. The third and, in our opinion, most plausible sce-

nario is therefore a combination of initial likelihood insensitivity with Choquet Bayesian

learning over the life-cycle so that the agent’s experience function e(h) strictly increases

in her age h. In this scenario, the age-dependent neo-additive survival beliefs (21) do

not converge through Bayesian learning to the objective survival probabilities.
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Observation 4. Fix the neo-additive joint parameter and sample space (11) for some
k such that δ > 0. As the values of the experience function e (h) get large, the

ambiguous beliefs νhk,t converge to the value of the λ parameter of the Choquet

Bayesian learning model, i.e.,

lim
e(h)→∞

δhλh + (1− δh)ψk,t = λ.

The data on subjective survival beliefs from the Health and Retirement Study (HRS)

shows that “young”people underestimate whereas “old”people overestimate their chances

to survive into the future (see, e.g., Ludwig and Zimper (2013), Nicholls and Zimper

(2015) and references therein). Because neo-additive survival beliefs do, by Observation

4, not converge to objective probabilities whenever there is likelihood insensitivity in

the Choquet Bayesian learning model, our calibrated learning model is able to replicate

these age-dependent bias patterns. This formal fact leads to the superior empirical per-

formance of our calibrated life-cycle model (to be constructed in the following section)

over the standard RE model.

4 NEO Life-Cycle Model

This section merges our notion of ambiguous survival beliefs with a canonical life-cycle

consumption model. This quantitative model features many elements that are standard

in the RE literature. As the only deviation from this benchmark we take the neo-additive

survival beliefs developed in the previous section as the agent’s decision weights.

4.1 Demographics

We consider a large number of ex-ante identical agents (=households). Households

become economically active at age (or period) 0 and live at most until age T whereby

one model period corresponds to one calendar year. Households stochastically die and

this survival risk is an idiosyncratic risk that washes out at the aggregate level. As we

also hold constant the number of newborn households the population is stationary. We

denote the number of households of age t by Nt and normalize total population to unity,

i.e.,
∑T

t=0 Nt = 1. Households work full time during periods 1, . . . , tr− 1 and are retired

thereafter. The working population is
∑tr−1

t=0 Nt and the retired population is
∑T

t=tr
Nt.

We refer to age h ≤ t as the planning age of the household, i.e., the age when

households make their consumption and saving plans for the future. We denote objective

survival probabilities for all in-between periods k, h ≤ k < t, by ψk,t where ψk,t ∈ (0, 1)
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for all t ≤ T and ψk,t = 0 for t = T + 1. The dynamics of the population are given

by Nt+1 = ψt,t+1Nt, for N0 given.

4.2 Endowments

There are discrete shocks to labor productivity in every period t = 0, 1, ..., , tr−1 denoted

by ηt ∈ E, E finite, which are i.i.d. across households of the same age. The reason for

modeling stochastic labor productivity is to impose discipline on calibration. Our fully

rational model features standard elements as used in numerous structural empirical

studies on life-cycle models, cf., e.g., Laibson et al. (1998), Gourinchas and Parker

(2002). By ηt = (η1, . . . , ηt) we denote a history of shocks and η
t | ηh with h ≤ t is

the history (η1, . . . , ηh, ..., ηt). Let E be the powerset of the finite set E. E
tr−1 are σ-

algebras generated by E,E, .... We assume that there is an objective probability space(
×tr−1
t=0 E

tr−1, π
)
such that πt(ηt | ηh) denotes the probability of ηt conditional on ηh.

We follow Carroll (1992), Gourinchas and Parker (2002) and others and assume

that one element in E is zero (zero income). Accordingly, πt(ηt | ηh) reflects a (small)
probability to receive zero income in period t. This feature gives rise to a self-imposed

borrowing constraint and thereby to continuously differentiable policy functions. (Self-

imposed) borrowing constraints are required to generate realistic paths of life-time con-

sumption, saving and asset accumulation. Continuous differentiability is convenient

when we model a sophisticated agent. By thereby avoiding technicalities as addressed

in Harris and Laibson (2001) we keep our analysis focused. Since the zero income prob-

ability is small, results are virtually unaffected by this assumption, relative to a model

with a fixed zero borrowing limit which would result in a kink in each policy function.

In addition, we assume productivity to vary by age, denoted by φt, to reflect a familiar

hump-shaped life-cycle earnings profile.

After retirement at age tr households receive a lump-sum pension income, b. Retire-

ment income is modeled in order to achieve a realistic calibration. (Without retirement

income accumulated assets would be too high– ceteris paribus– which would be off-

set in the calibration by a higher discount rate.) Pension contributions are levied at

contribution rate τ . To achieve a self-imposed borrowing constraint and continuously

differentiable policy functions also during the retirement period, we assume that there

is a small i.i.d. probability of default of the government on its pension obligations. Ac-

cordingly, ηt ∈ Er = [1, 0] during retirement. Correspondingly, let Er be the powerset

of the finite set Er. ErT−tr+1 are σ-algebras generated by Er,Er, ... and
(
×Tt=trEr, πr

)
is

the objective probability space in the retirement period.
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Collecting elements, income of a household of age t is given by

yt =

{
ηtφtw (1− τ) for t < tr

ηtb for t ≥ tr.

We abstract from private annuity markets.14 The interest rate, r, is assumed to be

fixed. With cash-on-hand given as xt ≡ at (1 + r) + yt the budget constraint writes as

xt+1 = (xt − ct) (1 + r) + yt+1. (23)

Finally, define total income as ytott ≡ yt+rat, and gross savings as assets tomorrow, at+1.

4.3 Government

We assume a pure PAYG public social security system. Denote by χ the net pension

benefit level, i.e., the ratio of pensions to net wages. The government budget is assumed

to be balanced each period and is given by

τw
tr−1∑
t=0

φtNt = b
T∑
t=tr

Nt. (24)

In addition, accidental bequests– arising because of missing annuity markets– are

taxed away at a confiscatory rate of 100%. Also, in the unlikely event of default of the

government on its pension obligations, the government collects the contributions to the

pension system. Both these revenues are used for government consumption which is

otherwise neutral.

4.4 NEO Preferences

Households face two dimensions of uncertainty, respectively risk, about period t con-

sumption. First, agents face a risky labor income which we model in the standard

objective expected utility way. Second, agents are uncertain with respect to their life

expectancy which we model in terms of a Choquet expected utility maximizing agent

such that decision weights are given as the motivational neo-additive survival beliefs of

Definition 2. We refer to such agents as ‘NEO agents’.

14Hence, we do not address the annuity puzzle in this paper, i.e., the observed small size of private

annuity markets, see Friedman and Warshawsky (1990) for an overview. On the one hand, underesti-

mation of survival beliefs extenuates the annuity puzzle. On the other hand, overestimation at old age

reinforces the puzzle. However, overestimation of survival rates only sets in after the age of 70 and the

average underestimation in our total sample is around 27 percentage points so that the observed biases

could be one explanation for the overall low demand for annuities.
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Given the productivity shock history ηh, denote by c ≡ (ch, ch+1, ch+2...) a shock-

contingent consumption plan such that the functions ct, for t = h, h + 1, ..., assign to

every history of shocks ηt|ηh some non-negative amount of period t consumption. Denote
by u (ct) the agent’s strictly increasing utility from consumption at age t, i.e., u′ (ct) > 0.

We normalize u (0) = 0. We assume that the agent is strictly risk-averse, i.e., u′′ (ct) < 0.

Expected utility of an h-old agent from consumption in period t > h contingent on the

observed history of productivity shocks ηh is given as Eh [u (ct)] ≡ E
[
u (ct) , π

(
ηt|ηh

)]
=∑

ηt|ηh
u (ct) π

(
ηt|ηh

)
.

We assume additive time-separability and add a raw time discount factor β = 1
1+ρ
.15

Fix some s ∈ {h, h+ 1, ..., T} with the interpretation that the agent survives until pe-
riod s and dies afterwards. Zero consumption in periods of death implies that u (ct) = 0

for all t > s. Given s, the agent’s von Neumann Morgenstern utility from a consumption

plan c is defined as

U (c (s)) = u(ch) +
s∑

t=h+1

βt−hEh [u (ct)] . (25)

We model the h-old agent as a Choquet decision maker whose survival uncertainty is

expressed through the neo-additive survival beliefs of Definition 2. Thereby, we restrict

attention to the neo-additive probability space
(
Ω,F , νhh

)
which expresses the beliefs of

an h-old agent to survive from her current age h to any age t > h. This NEO agent’s

Choquet expected utility from consumption plan c with respect to νhh is given as (cf.

Observation 1)

E
[
U (c) , νhh

]
= δh

[
λh sup

s∈{h,h+1,...}
U (c (s)) + (1− λh) inf

s∈{h,h+1,...}
U (c (s))

]

+ (1− δh) ·
T∑
s=h

[U (c (s)) , ψ (Ds | Zh)] , (26)

where ψ (Ds | Zh) denotes the objective probability that the h-old agent dies at the end
of period s. Note that we have as best, resp. worst case, scenario for any c that

sup
s∈{h,h+1,...}

U (c (s)) = u(ch) +

T∑
t=h+1

βt−hEh [u (ct)] ,

inf
s∈{h,h+1,...}

U (c (s)) = u(ch), (27)

15In line with Halevy (2008) and Andreoni and Sprenger (2012), we assume that time-preferences

cannot be reduced to preferences under uncertainty. To keep the formalism as transparent as possible,

we simply consider standard exponential time-discounting.
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i.e., the least upper bound consists of the discounted sum of utilities if survival prob-

abilities were equal to one in every period. The greatest lower bound is the utility if

the agent does not survive to the next period. The following technically convenient

characterization of (26) is derived in the appendix.

Proposition 2. Consider a NEO agent of age h. This NEO agent’s Choquet expected
utility from consumption plan c is given by

E
[
U (c) , νh

]
= u(ch) +

T∑
t=h+1

νhh,t · βt−h · Eh [u (ct)] (28)

where the subjective probability belief to survive from age h to t ≥ h is given by

νhh,t =

{
δh · λh + (1− δh) · ψh,t for t > h

1 for t = h
(29)

with δh and λh given by (18) and (19), respectively.

Because λh determines how much decision weight is (additionally) put on the best

versus worst possible utility scenario in the NEO life-cycle model (26), we henceforth call

λh age-specific measures of relative optimism. Note that this motivational interpretation

of λh in terms of ambiguity attitudes for the NEO life-cycle model is different from our

cognitive interpretation of λ as an “over-/underestimation”parameter in the Choquet

Bayesian learning model.

4.5 Recursive Problem and Dynamic Inconsistency

At each age h, the NEO agent constructs a consumption and saving plan that maxi-

mizes her lifetime utility. The age-dependent sequence of neo-additive probability spaces(
Ω,F , νhh

)
, h = 1, ..., T , violates dynamic consistency of the NEO agent’s life-cycle util-

ity maximization problem whenever the neo-additive survival beliefs do not reduce to

the limiting case of rational expectations (where, for all h, νhh = ψ (· | Zh)).16 To charac-
terize actual behavior in presence of dynamic inconsistency, we analyze both naive and

sophisticated NEO agents, cf. Strotz (1955) or inter alia O’Donoghue and Rabin (1999)

for procrastination models.

A naive NEO agent is completely unaware of this dynamic inconsistency in that she

ignores that her future selves will have strict incentives to deviate from a plan that

16We refer the interested reader to the axiomatic treatment of the relationship between violations

of dynamic consistency and violations of Savage’s (1954) sure-thing principle (as in Choquet expected

utility theory) to Epstein and Le Breton (1993), Ghirardato (2002), and Siniscalchi (2011).
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maximizes her lifetime utility from the perspective of age h. We model naifs so that, for

each age h, self h implements the first action of her optimal plan expecting future selves to

implement the remaining plan. In contrast, sophisticates fully understand the dynamic

inconsistency. They incorporate the anticipated utility maximization problems of their

future selves as constraints into their own maximization problem. The resulting strategic

situation– in which each agent effectively plays a game against her future selves– is

solved through backward induction: Conditional on any observed consumption- and

saving history, the optimal consumption and saving plan of self T is incorporated into

self T − 1’s optimal plan, which are both incorporated into self T − 2 ’s optimal plan

and so forth to the initial self 0.

Although there exists some empirical evidence suggesting that naive rather than

sophisticated decision making might be more relevant (cf. O’Donoghue and Rabin (1999)

and the literature cited therein), there also exists evidence according to which several

investment and contractual arrangements (e.g., investment in rather illiquid assets such

as real estate financed by long-term loans) serve as commitment devices through which

sophisticated agents restrain the consumption behavior of their future selves (cf., e.g.,

Ludwig and Zimper (2006) and references therein). In the present paper, we take the

pragmatic stand to consider both types of behavior.

We further assume that income risk is first-order Markov so that π(ηt | ηt−1) =

π(ηt | ηt−1). It is then straightforward to set up the recursive formulation of lifetime

utility (28). The value function of age t ≥ h viewed from planning age h is given by

V h
t (xt, ηt) = max

ct,xt+1

{
u (ct) + β

νhh,t+1

νhh,t
Et
[
V h
t+1

(
xt+1, ηt+1

)]}
.

Maximization of the above is subject to (23).

Naive NEO Agents

The naive NEO agent’s first order condition is given by the standard Euler equations.

Proposition 3. The Euler equation for the naive NEO agent for all t ≥ h is given by

du

dct
= β (1 + r) ·

νhh,t+1

νhh,t
· Et

[
du

dct+1

]
, (30)

where
νhh,t+1

νhh,t
=

νhh,h+1 = δhλh + (1− δh)ψh,h+1 for t = h
δhλh+(1−δh)ψh,t+1
δhλh+(1−δh)ψh,t

for t > h.
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By (30), the expected growth of marginal utility from h to h+1 is higher than under

rational expectations if the household underestimates the probability of survival to the

next period, i.e., if νhh,h+1 < ψh,h+1, and vice versa for overestimation. From (30) we can

also verify that the NEO life-cycle maximization problem is dynamically inconsistent if

and only if the neo-additive survival beliefs do not reduce to additive probabilities. To

see this formally compare the optimal consumption choice of an h + 1 old agent, first,

from the perspective of an h old and, second, from her actual perspective when she turns

h+1. By Proposition 3, the optimal consumption plan for age h+1 from the perspective

of age h requires that

du

dch+1

= β (1 + r) ·
νhh,h+2

νhh,h+1

· Eh+1

[
du

dch+2

]
, (31)

whereas the optimal consumption choice at age h+ 1 from the perspective of age h+ 1

requires that
du

dch+1

= β (1 + r) ·
νh+1
h+1,h+2

νh+1
h+1,h+1

· Eh+1

[
du

dch+2

]
. (32)

Dynamic consistency with respect to the optimal consumption choice at age h + 1

thus holds if and only if the two first order conditions (31) and (32) coincide. Because

of νh+1
h+1,h+1 = 1, this is the case if and only if

νhh,h+2

νhh,h+1

= νh+1
h+1,h+2,

which holds for δ = 0 and e(h)→∞ implying

νhh,h+2

νhh,h+1

=
ψh,h+2

ψh,h+1

= ψh+1,h+2 = νh+1
h+1,h+2,

but which is violated for δ > 0 since (generically)

νhh,h+2

νhh,h+1

=
δhλh + (1− δh)ψh,h+2

δhλh + (1− δh)ψh,h+1

6= δh+1λh+1 + (1− δh+1)ψh+1,h+2 = νh+1
h+1,h+2.

As in the rank dependent utility model of Halevy (2008)– which does not consider

Bayesian updating of non-additive beliefs– the life-cycle maximization problem of naive

NEO agents is thus dynamically inconsistent. While dynamic inconsistency in Halevy

(2008) results from a fixed non-additive probability measure, dynamic inconsistency in

our model comes with a sequence of age-dependent neo-additive capacities resulting from

our Choquet Bayesian learning model.
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Sophisticated NEO Agents

Sophisticated NEO agents are fully aware of their dynamic inconsistency. Self h tries

to influence future self’s h+ 1 behavior via the choice of savings, xt+1. Hence, the usual

Envelope conditions which are standard in rational expectations problems no longer

apply, cf., e.g., Angeletos et al. (2001). As a result, the marginal propensities to

consume out of cash-on-hand (MPC), mh+1 ≡ ∂ch+1
∂xh+1

, show up explicitly in the first-order

conditions. The sophisticated NEO agent’s optimal behavior is therefore characterized

by a “generalized Euler equation with adjustment factor”:

Proposition 4. The generalized Euler equation with adjustment factor for the sophis-
ticated NEO agent at age h is given by

du

dch
= β (1 + r) · νhh,h+1 · Eh

[
Θh+1 ·

du

dch+1

+ Λh+1

]
(33)

where

Θh+1 ≡ mh+1 +
νhh,h+2

νhh,h+1 · νh+1
h+1,h+2

(1−mh+1) (34)

and

Λh+1 ≡ β(1 + r)
νhh,h+2

νhh,h+1

(1−mh+1)

(
∂V h

h+2

∂xh+2

−
∂V h+1

h+2

∂xh+2

)
. (35)

Proof: See Appendix A.

Relative to the naive NEO agent, the FOC of the sophisticated NEO agent (33)

hence features two additional terms, Θh+1 and Λh+1. To interpret this condition, first

assume that Λh+1 = 0. Then (33)-(34) are analogous to the “generalized Euler equation”

derived in the (quasi-)hyperbolic time discounting literature, cf., e.g., Harris and Laibson

(2001). The latter refer to (the analogue of) expression βνhh,h+1Θh+1 as the “effective

discount factor”. The condition is easiest to interpret by noticing that Θh+1 > 1 iffϕh ≡
νhh,h+2

νhh,h+1·ν
h+1
h+1,h+2

> 1, which holds in our calibration of the NEO life-cycle model. In this

case the marginal propensity to save next period, 1−mh+1, receives a higher value than

the MPC, mh+1, and self h correspondingly expresses higher patience than according to

the pure short-run discount factor βνhh,h+1. To gain further intuition observe that, as

long as ϕh > 1, the effective discount factor varies inversely with next period’s MPC,

just as in the hyperbolic time discounting model. If the MPC of self h+1 increases– i.e.,

self h + 1 values consumption more– then self h compensates this overconsumption of

her own future self by increasing impatience, hence by consuming more today and saving

less.
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Next, turn to the general case where Λh+1 6= 0. For sophisticated NEO agents the

value functions of selves h and h + 1 in periods h + 2 are age-dependent. A positive

difference
∂V hh+2
∂xh+2

− ∂V h+1h+2

∂xh+2
means that self h’s marginal valuation of cash-on-hand in pe-

riod h+ 2 is higher than self h+ 1’s. Under such a positive difference self h accordingly

values savings from h+ 1 to h+ 2 more than self h+ 1. This increases the RHS of (33)

thereby increasing savings already at age h.

4.6 Aggregation

Wealth dispersion within each age bin is only driven by productivity shocks. We denote

the cross-sectional measure of agents with characteristics (at, ηt) by Φt(at, ηt). Denote

by A = [0,∞] the set of all possible asset holdings and let E be the set of all possible
income realizations (encompassing both, the working and the retirement period). De-

fine by P (E) the power set of E and by B (A) the Borel σ-algebra of A. Let Y be the
Cartesian product Y = A× E and M = (B (A)) . The measures Φt(·) are elements of
M. We denote the Markov transition function– telling us how people with character-

istics (t, at, ηt) move to period t + 1 with characteristics t + 1, at+1, ηt+1– by Qt(at, ηt).

The cross-sectional measure evolves according to

Φt+1 (A× E) =

∫
Qt ((at, ηt) ,A× E) · Φt (dat×dηt)

and for newborns

Φ1 (A× E) = N1 ·

Π(E) if 0 ∈ A
0 else.

The Markov transition function Qt(·) is given by

Qt ((at, ηt) ,A× E) =


∑

ηt+1∈E π
(
ηt+1|ηt

)
· ψt,t+1 if at+1 (at, ηt) ∈ A

0 else,

for all (at, ηt) ∈ Y and all (A× E) ∈ Y.
Aggregation gives average

consumption: c̄t = 1
Nt

∫
ct(at, ηt)Φt(dat × dηt),

assets: āt = 1
Nt

∫
atΦt(dat × dηt),

income: ȳt = 1
Nt

∫
yt(ηt)Φtdηt,

total income: ȳtott = ȳt + rāt,

saving rate: s̄t = 1
Nt

∫
st(at, ηt)Φt(dat × dηt), where st(at, ηt) = 1− ct(at,ηt)

yt(ηt)+r·at
.
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In the quantitative section we also study average saving plans of naive NEO agents.

By dynamic inconsistency, these agents update their plans in each period. As a way to

compare any gap between plans made at age h and realizations at t ≥ h for NEO agents

we denote the planned average saving rate with superscript h for the respective planning

age and compute

s̄ht =
1

Nt

∫
sht (at, ηt)Φ

h
t (dat × dηt), (36)

for all t. This gives hypothetical average profiles of the saving rate in the population if

households stick to their respective period-h plans in all periods t = h, . . . , T . Observe

that Φh
t (·) is an artificial distribution generated by respective plans of households. By

dynamic consistency, we have for both RE and sophisticated NEO agents that

sht (at, ηt) = s1
t (at, ηt) hence s̄ht = s̄t,

for all h = 1, . . . , T . These equalities hold for naive NEO agents only for t = h and,

independent of current age h, for t = T .

5 Calibration

We calibrate parameters of the model to minimize the distance between model simulated

moments and empirical counterparts. To determine all model parameters ξ ∈ Ξ ⊂ Rs

we follow the literature and proceed in two stages.17 We partition ξ into two subvectors,

ϑ ∈ Rk and % ∈ Rl and treat ϑ as the vector of first stage parameters that can be
identified without using the NEO life-cycle model. In the second stage, the remaining

parameters % are determined by using a Method of Simulated Moments (SMM), taking

as given the first-stage parameter estimates, ϑ̂. We only estimate the discount rate ρ as

a second stage parameter, hence l = 1.

5.1 First-Stage Parameters

Households enter the model at the biological age of 20 which we normalize to model

age 0. The retirement age is 62, hence tr = 42, according to the average retirement age

reported in the Survey of Consumer Finance (SCF).18 We set the horizon to a maximum

biological human lifespan of age 125, hence T = 105. This choice is motivated by

estimates based on Swedish female life-table data by Weon and Je (2009).

17For examples in the life-cycle context, see Gourinchas and Parker (2002), Cagetti (2003), De Nardi

et al. (2010), and Lockwood (2014).
18We compute the average retirement age by pooling the SCF waves 1992-2007 and exclude respon-

dents younger than 45.
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Objective Survival Rates

For objective survival rates we use average cross-sectional survival rates for the US be-

tween 2000-2010 taken from the Human Mortality Database (HMD). Data on survival

rates becomes unreliable for ages past 100 as age-specific sample-size is low. Bebbing-

ton et al. (2011) argue that a standard Gompertz-Makeham law, cf., e.g., Preston et

al. (2001), is ill-suited for estimating human survival rates at high ages.19 This is due

to the fact that human mortality, while first increasing exponentially with age, finally

decelerates for high ages past 95. To account for this mortality deceleration we fol-

low Bebbington et al. (2011) by applying the logistic frailty model. Accordingly, the

mortality rate µt at age t obeys

µt =
A exp (α · t)

1 + s2 (exp (α · t)− 1) A
α

+ εt, εt ∼ N (0, σ2), (37)

where the term in the denominator corresponds to the standard Gompertz-Makeham

law. We estimate parameters to get an out of sample prediction for ages past 100 and

use predicted values as objective cohort data in the simulation. The implied average

mortality rate converges to a value of 0.57 at ages around 110 (t = 90). This is well

in line with Gampe (2010) who reports an annual mortality rate of around 0.5 for

persons past age 110 using data for a series of OECD countries on mortality rates of

supercentenarians.

Neo-additive Survival Beliefs

We follow Ludwig and Zimper (2013) and estimate parameters δ and λ, cf. equations (18)

and (19), to match the HRS data. Subjective survival rates are obtained by pooling a

sample of HRS waves {2000, 2002, 2004}. Except for heterogeneity in age, we ignore
all other heterogeneity across individuals. Before proceeding with the estimation, the

experience function e(h) remains to be specified. A general functional form with positive

integers is e(h) ≡ ω·(20+h), for ω ∈ N, which assumes that experience starts at biological
birth, cf. our discussion of Assumption A1 in Section 2.2. Identifying parameters in e(h)

is not straightforward from our data on survival beliefs alone because of the interplay

with the other model parameters δ and λ. We therefore restrict the learning speed such

that ω = 1.20 With this baseline specification and parametrization we get δ̂ = 0.0163

and λ̂ = 0.413 and implied values for δh and λh that lie well within reasonable ranges

discussed in the literature, cf. Figure 2 in Section 6. As the confidence intervals reported

19However, see Gavrilova and Gavrilov (2015) for a recent criticism of this view.
20For higher values of ω the fit of the full life-cycle model to asset data improves slightly– the

“optimal”ω is about 140– without affecting our results in any relevant way.
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in Table 1 show, these parameters are estimated with high precision. The predicted

subjective survival rates resulting from our model of neo-additive survival beliefs fit

their empirical counterparts, i.e., the average subjective survival beliefs for each interview

age h, from the HRS quite well, cf. Figure 1 in Section 6. As a robustness check, we

investigate the relevance of the parametrization of the experience function by considering

a static model with constant experience (e(h) = n for some n) to the effect that δh = δ̄

and λh = λ̄ for all h, cf. our discussion in Section 3.2.

Prices and Endowments

Wages are normalized to w = 1. We take a three-state first-order Markov chain for the

income process in periods t = 0, . . . , tr − 1 with state vector Ew = [1 + ε, 1− ε, 0]. The

last entry reflects the state with zero income with probability ζ = 0.005, cf. Carroll

(1992). The transition matrix during the working period writes as

Πw =

 (1− ζ)κ (1− ζ)(1− κ) ζ

(1− ζ)(1− κ) (1− ζ)κ ζ

0.5 · (1− ζ) 0.5 · (1− ζ) ζ


for t = 0, . . . , tr. Households do not draw zero income in their first period of life,

therefore the initial probability vector of the Markov chain is π0 = [0.5, 0.5, 0]′. Values

of persistence and conditional variance of the income shock process are based on the

estimates of Storesletten et al. (2004) yielding κ = 0.97 and ε = 0.68. Age specific

productivity {φt} is estimated based on PSID earnings data, cf. Ludwig, Schelkle and
Vogel (2012).

In retirement, for t = tr, . . . , T , we take as state vector Er = [1, 0]. We assume an

even smaller probability to receive zero retirement income of ζr = 0.001 which reflects

default of the government on its pension obligations. We accordingly have

Πr =

[
1− ζr ζr

1− ζr ζr

]
for t = tr, . . . , T and we take as initial probability vector πtr+1 = [1− ζr, ζr]′.
The interest rate is set to r = 0.042 based on Siegel (2002). For the social security

contribution rate we take the US contribution rate of τ = 0.124. Pension payments b

then follow from the social security budget constraint (24).

Per-Period Utility

Recall that we normalize utility from death to zero, i.e., if the household dies at the

end of period t − 1 we let u(ct) = u(0) = 0. As to utility from survival we take
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a CRRA per period utility function with coeffi cient of relative risk aversion θ or the

intertemporal elasticity of substitution (IES) of 1/θ. For the IES we take a conventional

value chosen in the literature of 1/3, (θ = 3).21 This choice implies that a standard

CRRA utility function of the form u(ct) =
c1−θt

1−θ is negative for all ct > 0. This would

violate our assumption of positive utility from survival thereby exceeding utility from

death, cf. our notion of the worst, respectively best, possible outcome in Subsection 4.4.

We cure this by adding an additive preference shifter to the per period utility function,

denoted by Υ > 0. With this monotone transformation we can ensure (via calibration)

that utility from survival is always positive. Of course, adding a constant to all utility

numbers does not affect optimal choices.22 Collecting elements, the per-period utility

function reads as

u (ct) = Υ +
c1−θ
t

1− θ
for some Υ > 0.

5.2 Second Stage Estimation

So far, we have conveniently suppressed in our notation that all model simulated variables

are conditional on the values of first and second stage parameters. To formally introduce

the SMM estimator we now make this contingency explicit by defining the average (or,

unconditional) asset holdings at age t as

āt(ρ, ϑ̂) ≡ E
[
at | ρ, ϑ̂

]
=

1

Nt

∫
atΦt(dat × dηt; ρ, ϑ̂),

where ϑ̂ is the vector collecting first stage parameter estimates. We normalize model

simulated assets and life-cycle assets extracted from the data by permanent income.

Because permanent income is not affected by δ, λ, we split ϑ̂ as [δ̂, λ̂, ϑ̂1] and deter-

mine the unconditional permanent income as the constant annuity payment from the

net present value of average (labor, respectively retirement) income over the life-cycle,

discounted with the risk-free interest rate r. Normalized wealth simulated from the

model is then āyt(ρ, ϑ̂) ≡ āt(ρ,ϑ̂)
ȳpt (ϑ̂1)

. Correspondingly, denote by āydt the data analogue, cf.

Appendix B for details on the construction.

21The reason for picking a fixed value of the IES as a first-stage parameter while, at the same

time, estimating the discount rate ρ endogenously as a second stage parameter, is identification: both

preference parameters govern the strength of the saving motive such that joint identification is hard in

a representative agent model such as ours.
22We can therefore calibrate Υ ex post. In our simulation, the lowest possible consumption realization

with positive probability, c, determines a lower bound to the effect that Υ > −u(c).
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Table 1: First-Stage Parameters

Parameter Source

Technology and Prices

w = 1 Gross wage normalized

r = 0.042 Interest rate Siegel (2002)

τ = 0.124 Soc. sec. contr. rate irs.gov

Income Process

κ = 0.97 Persistence of income Storesletten et al. (2004)

ε = 0.68 Variance of income Storesletten et al. (2004)

{φt} Age specific productivity PSID

ζ = 0.005 Prob. of zero lab. inc. Carroll (1992)

ζr = 0.001 Prob. of zero ret. inc.

Preferences

θ = 3 Coeff. of rel. risk aversion

Subjective Survival Beliefs

δ = 0.0163 [0.0150, 0.0179] Likelihood Insensitivity HRS

λ = 0.413 [0.397, 0.427] Relative overestimation HRS

ω = 1 Learning speed

Age Limits and Survival Data

0 Initial model age (age 20)

tr = 42 Retirement (age 62) SCF

T = 105 Maximum human lifespan Weon and Je (2009){
ψk,t
}

Cohort survival rates HMD

s = 0.41 Logistic frailty model HMD

α = 0.13 Logistic frailty model HMD

A = 2.9e− 06 Logistic frailty model HMD

Notes: First-stage parameters that are calibrated outside the life-cycle model. 95%-confidence

intervals (CI) for subjective survival belief parameters δ, λ (reported in squared brackets in the

respective rows) are bootstrapped, cf. Appendix B.

31



We then seek to estimate the discount factor ρ from the moment conditions

mt(ρ, ϑ̂) = āydt − āyt
(
ρ, ϑ̂
)

for the age range 30 (t0 = 10) to 95 (T0 = 75)23 leaving us with 66 empirical moments.

Collecting moment conditions in vectorm
(
ρ, ϑ̂
)
we minimize the following loss function

J
(
ρ, ϑ̂
)

= m
(
ρ, ϑ̂
)′
Wm

(
ρ, ϑ̂
)
, (38)

where W is a weighting matrix containing the fraction of observations per age bin in

the SCF data. As there are few observations at high ages past 85, this choice of the

weighting matrix ensures that the sample analogue of the moment conditions that are

estimated with more precision receive more weight in the estimation. The SMM thus

solves

ρ̂ = arg min
ρ
J
(
ρ, ϑ̂
)
. (39)

For our baseline results, we estimate a different subjective time discount rate ρ for each

of the three models, the RE, the naive and the sophisticated NEO life-cycle model. This

way, we give each model an equal chance to match the asset data.

We construct the sampling distribution of our test statistics nonparametrically, using

a bootstrap procedure, see Appendix B for details. We follow standard approaches in

the literature and ignore much of the sampling uncertainty of first-stage parameter

estimates.24 An exception is those parameters that govern subjective survival beliefs,

i.e., [δ, λ] ∈ ϑ. Taking the sampling uncertainty with respect to these two parameters
into account is important for our statistical tests when we compare across nested models,

i.e., the two NEO alternatives to the RE model. Results on these tests are reported in

Section 6.

The discount rate ρ is estimated with high precision, cf. Table 2. We observe

that the estimated discount rate of naive NEO agents is much lower than of the RE

and sophisticated NEO agents. In Section 6.2 we investigate the the implications of

these differences by illustrating how results are affected when we hold the discount rate

constant across model variants.
23A starting age of 30 is motivated by the fact that we do not explicitly model education decisions

so that our model does not match the data well at very young ages.
24See Cagetti (2003), De Nardi et al. (2010), and Lockwood (2014) for examples. An exception is

Gourinchas and Parker (2002) who consider fist-stage uncertainty.
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Table 2: Second-Stage Preference Parameter: The Subjective Discount Rate

RE naive NEO sophisticated NEO

Discount Rate, ρ 0.0384 0.0347 0.0394

95%-Confidence Interval [0.0351, 0.0413] [0.0320, 0.0372] [0.0368, 0.0416]

Notes: Second-stage parameter estimates for ρ̂, cf. equation (39). Confidence intervals are boot-

strapped, cf. Appendix B.

6 Results

6.1 Neo-additive Survival Beliefs versus Rational Expectations

Figure 1 compares predicted subjective survival rates resulting from our model of neo-

additive survival beliefs with their empirical counterparts and corresponding objective

survival rates. Actual subjective survival beliefs are elicited in the HRS only for a com-

bination of the age at interview of the individual (which is shown on the abscissa of the

figure) and a corresponding target age. For example, individuals of age 69 and younger

are asked about their subjective assessment to live until age 80 whereas individuals of

age 70 to 74 are asked about their probability to live until age 85, and so forth, cf.

Appendix B. The step function of corresponding objective probabilities in Figure 1 ac-

cordingly follows from changes in the interview age / target age assignment. E.g., the

objective chance to live from 69 to 80 is much higher than the chance to live from 70

to 85. Therefore, objective survival beliefs drop discretely between interview ages 69

and 70.25 Overall the data pattern of subjective beliefs mirrors findings in numerous

empirical studies on subjective survival beliefs, cf. Ludwig and Zimper (2013), Nicholls

and Zimper (2015) and references therein: Until the age of about 70, people underesti-

mate whereas later in life they overestimate their chances to survive into the future. On

average, these biases are relatively large.26 For parameter estimates δ̂ and λ̂, cf. Table 1,

25Within each interview age / target age bin, objective survival rates generally increase. For example,

the chance to survive from age 60 to 80 is lower than the chance to survive from age 61 to 80. On the

other hand, our cohort based prediction of objective survival rates incorporates trends in life-expectancy.

In particular at relatively “young” ages it may therefore be that the objective survival rate curve is

initially downward sloping within interview age / target age bins.
26Ludwig and Zimper (2013) document that these findings are robust to focal point answers and that

they are neither driven by cohort effects or differential mortality between the HRS and the population.

Furthermore, results of our ongoing research where we exploit newly available data in the HRS on

psychological attitudes suggest that these results are also not driven by selection on attitude: controlling

for objective health measures and socioeconomic characteristics we do not find that optimists are more

likely to survive.
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the figure also shows that, on average, the simulated data matches this overall pattern

quite well.

Figure 1: Objective, Subjective and Predicted Subjective Survival Rates
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Notes: Unconditional probabilities to survive to different target ages according to the HRS. Interview

age is on the abscissa. The solid blue line are subjective survival beliefs, the dashed-dotted red line

are the corresponding objective survival rates and the dashed green line are simulated subjective

survival beliefs from the estimated NEO model.

Figure 2 displays the age-specific degree of ambiguity and the degree of relative

optimism, both as a function of planning age h, cf. equations (18) and (19). The degree

of ambiguity, δh, is a monotonically increasing27 and concave function of planning age h.

Relative optimism, λh, is a decreasing and convex function, albeit the decrease in relative

optimism in age is quantitatively small. Overall, there are two dynamics in the model:

first, ambiguity attitudes are changing over age according to the pattern in Figure 2 and

second, objective survival chances decrease in age. This latter effect in combination with

the positive estimates of λh and δh leads to increasingly optimistic biases of predicted

subjective survival beliefs, cf. equation (29), despite the fact that λh decreases slightly.

Figure 3 compares ambiguous subjective survival functions to their objective coun-

terparts. The two panels of the figure represent two different planning ages h, planning

age 20 (h = 0) in Panel (a) and planning age 85 (h = 65) in Panel (b). In each panel of

the figure, (future) age t ≥ h is depicted on the abscissa. Within each panel, experience

is unaltered and hence the ambiguity parameter δh and the optimism parameter λh is

27Generally, the behavior of δh is non-monotone. For our estimates δh starts to increase at the

biological of age of 12.
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Figure 2: Degree of Ambiguity and Relative Optimism over the Life Cycle
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Notes: Degree of ambiguity δh and relative optimism λh as a function of planning age h.

constant. Across panels, experience and hence ambiguity is increasing whereas optimism

decreases slightly, according to the pattern of Figure 2. The initial point in each survival

function at age t = h is driven by ambiguity at that age. As planning age h increases,

i.e., as we move from Panel (a) to Panel (b), the distance of this point to a survival rate

of 1 increases.28 The key observation from Figure 3 is that subjective survival functions

are flatter than their objective counterparts which is in line with Hamermesh (1985),

Hurd et al. (1998), Peracchi and Perotti (2010), Elder (2013) and several others. Fur-

thermore, neo-additive survival beliefs match the stylized fact described by Wu et al.

(2015): People at a specific planning (or interview) age underestimate their chances of

survival to the nearer future and overestimate survival probabilities to the more distant

future. Also notice that the overestimation of survival probabilities becomes more pro-

nounced as the agent gets older; that is, from the perspective of the current planning

age it takes fewer years for older agents to become optimistic with respect to survival

beliefs than it takes for younger agents, again compare Panel (a) and Panel (b) of the

Figure 3.

28Generally, the subjective survival functions exhibit such an initial blip which increases in h and

which results from the parsimonious structure of our model but otherwise does not affect our results

much, cf. Section 6.2.2 for a sensitivity analysis with respect to the size of this initial blip.

35



Figure 3: Survival Functions
(a) Planning Age 20 (b) Planning Age 85
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Notes: Unconditional objective probabilities and subjective beliefs viewed from different planning

ages h. Target age t is depicted on the abscissa.

6.2 Life-Cycle Profiles with Neo-additive Survival Beliefs

6.2.1 Baseline Calibration

To highlight the effects of the patterns of subjective survival beliefs shown in the previous

subsection on life-cycle savings, we conveniently compress all information by showing

average asset holdings of NEO agents compared to RE agents who use objective survival

data. We focus on average assets normalized by permanent income as described in

the calibration section scaling assets with the same annuity value as the one used for

estimating preference parameters, cf. Section 5.2.

Figure 4 displays average (normalized) asset holdings over the life-cycle for the three

types of agents– RE agents, naive and sophisticated NEO agents– and compares those

to the (smoothed) data. Assets steadily increase until retirement entry and fall there-

after, i.e., saving rates are positive during working life whereas agents dissave dur-

ing retirement. This life-cycle profile results from an interplay of two saving motives:

Households save for life-cycle (assets are accumulated in order to finance retirement

consumption) and precautionary motives. There are two forces triggering precautionary

saving. One is the standard income risk, the second is the risk of drawing zero labor

income. Since the latter gives rise to a self imposed borrowing constraint, asset holdings

throughout the life-cycle are always positive. As agents become older, life-cycle motives

for saving become more and more relevant and motives for precautionary saving become

less strong, also see, e.g., Gourinchas and Parker (2002). In retirement, the only precau-

tionary motive to save is to avoid zero resources in all income states. This motive again

becomes more and more relevant as asset holdings converge towards zero when agents
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get older.

Figure 4: Assets: NEO, RE and Data
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Notes: Assets, normalized by permanent income, from SCF data and for NEO and RE agents. The

data is smoothed and covers ages 30 through 95. Details on the data are provided in Appendix B.

With regard to differences in asset accumulation across types, first focus at the RE

model. Through the lens of this model the data are puzzling: relative to the data model

agents on average have higher saving and therefore stronger asset accumulation until

retirement and a faster speed of asset decumulation thereafter (cf. Table 3 below for a

quantification of this speed).29 Any attempt to improve the fit of the RE life-cycle model

by, e.g., decreasing the discount rate would lead to a lower speed of asset decumulation

at the cost of even higher saving during the working period and vice versa.

On the contrary, the calibrated naive NEO life-cycle model gives rise to less saving

during the accumulation phase and a much slower speed of asset decumulation than in

the RE life-cycle model, moving it close to the data. The driving force for undersaving

29As a consequence of differential mortality, predictions of average asset holdings from our representa-

tive agent model might be biased. According to the “mortality bias”households with low mortality risk

on average have higher lifetime incomes and asset holdings, cf., e.g., Love et al. (2009) and De Nardi et

al. (2010). We feed average mortality risk into an ex ante representative agent model to predict average

behavior thereby facing a version of Jensen’s inequality. It is straightforward to show that this may lead

to biases between predicted and observed wealth trajectories that can go both ways, i.e., depending on

the size of the gap of wealth positions between high and low mortality risk households, we may either

predict too fast or too slow asset decumulation relative to the average data. Addressing such biases

would only be possible using a heterogeneous agent model as in De Nardi et al. (2010), also see our

concluding remarks in Section 7.
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(relative to the RE life-cycle model) is pessimism with regard to survival prospects. The

reason for high old-age asset holdings is the strong optimism with regard to surviving

into the future, cf. Figure 3.

The sophisticated NEO life-cycle model generates very similar results compared to

the naive NEO life-cycle model: on average saving rates during the working period are

almost identical and old-age asset holdings of sophisticated agents are slightly higher:

by foreseeing the optimistic biases of their own future selves, sophisticates decumulate

assets at a lower speed for reasons of consumption smoothing. The close similarities

between the two NEO agents only occur because we recalibrate the discount rate. It is

about half a percentage point higher for the sophisticated agent, cf. Table 2. We discuss

this in detail below in Section 6.2.3.

Table 3 comprises our results by reporting summary statistics for all three agent types

and the data. In addition to average asset holdings already discussed above, the table

reports results on average saving rates, s̄t. We find that the average saving rate of NEO

agents during the prime saving years, ages 25-54, is about 10.7% for naive and 10.2% for

sophisticated agents. The corresponding average saving rate in the US is 9.5%, taken

from Bosworth et al. (1991) who base their estimate on the Consumer Expenditure

Survey (CES).30 On the contrary, RE agents save on average 12.5%, exceeding the

relevant data by 3 percentage points.

To further compare gaps between plans made at age h and realizations at ages t ≥ h

for naive NEO agents we compute the planned average saving rate, s̄ht . We observe that

initially NEO agents plan to save substantially more and correspondingly consume less

during working life which would result in higher assets: the planned average saving rate

at age 20 for ages 25-54 is 4.2 percentage points higher than the realized one. Actual

saving behavior deviates from plans because of time inconsistency and households save

less than planned because they moderately overestimate their future survival rates. If

overestimation was stronger, then they would actually save more than originally planned.

These patterns are qualitatively consistent with empirical findings in the literature on

undersaving.31

30The SCF does not contain quantitative questions on saving, only qualitative ones such as whether

one had positive saving. Furthermore, as the SCF does not have a panel dimension, we cannot compute

savings from changes in assets.
31Barsky et al. (1997) document that agents have a preference for constant or upward sloping con-

sumption paths which cannot be achieved by observed saving rates. Lusardi and Mitchell (2011) present

survey results showing that out of those households that made a retirement savings plan, the majority

was not able to stick to their plan. Finally, Choi et al. (2006) document that two thirds of respondents

in a survey have saving rates below their ideal ones.
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Table 3: Summary Statistics

RE NEO Data1)

Naive Soph.

Saving rate2) 12.5% 10.7% 10.2% 9.5%

[11.8, 13.3]% [10.1, 11.5]% [9.6, 10.9]% −
Saving rate, plan2) − 14.9% − −

[14.3, 15.7]

Assets: 75 to 623) 68.8% 78.1% 80.3% 71.9%

[67.9, 69.8]% [76.9, 79.4]% [79.2, 81.6]% [64.4, 80.8]%

Assets: 85 to 623) 35.6% 57.9% 62.8% 53.4%

[34.6, 36.7]% [56.2, 59.8]% [61.2, 64.7]% [44.8, 66.7]%

Assets: 95 to 623) 8.5% 36.9% 44.4% 46.7%

[8.0, 9.0]% [35.1, 38.9]% [42.6, 46.4]% [18.7, 102.3]%

Notes: Bootstrapped confidence intervals are in parenthesis.
1) The data for asset decumulation is calculated from smoothed SCF data, cf. Appendix B. The

saving rate is the weighted average of ages 25-54 between 1980-85 from the Consumer Expenditure

Survey (CES) as reported by Bosworth et al. (1991), Table 3.
2) The average saving rate as is defined as the average of individual saving rates between ages 25

and 54. The average planned saving rate is the rate for ages 25-54 planned at age 20.
3) Average asset holdings at age 75, 85 and 95 relative to assets at retirement entry at age 62.

Finally, in order to evaluate the fit of the models, we compute a bootstrap analogue

of the J-test for overidentifying restrictions, cf. Appendix B. As documented in the

upper part of Table 4, on the basis of these tests all models are rejected at the 5%-

level of statistical significance. As we only have one parameter in our model to match

66 moments this is not surprising and mimics standard results in the literature, cf.,

e.g., Gourinchas and Parker (2002) and De Nardi et al. (2010). More importantly,

the function value is lowest for the naive NEO model (cf. the first row in Table 4)

implying that the model moments come closest to their empirical counterpart which is

also reflected in the highest p-value. Our test results for model comparisons reported

in the lower part of Table 4 confirm this. For those we compute the difference of the

distributions between the function values for each of the two NEO models and the RE

model. A positive mean of these differences indicates a better data fit of the respective

NEO life-cycle model. The corresponding p-value shows the fraction of bootstrapped

function values where the difference is negative. This is true in only 2.4% of cases

for the naive and in 12.6% of cases for the sophisticated agent model. Therefore the

RE model has to be rejected in favor of the naive NEO model at conventional levels
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of statistical significance. The case for the sophisticated NEO model is less clear, on

statistical grounds. Comparing the two NEO models, we find that the naive NEO model

performs significantly better than the sophisticated NEO model with a p-value of 0.6%.

Table 4: Evaluation of Fit
RE naive NEO sophisticated NEO

Function Value 2.5432 2.0619 2.2229

p-value 0.6% 1.4% 1.0%

Average Distance − 0.5024 0.3448

p-value − 2.4% 12.6%

Notes: The function value is the value of an appropriately demeaned objective function, cf. Appen-

dix B for details. The p-value is the fraction of bootstrapped function values that generate a larger

function value than the function value at the point estimate. The average distance is the average

difference of bootstrapped function values between the respective NEO and the RE model. The

p-value is the fraction of cases in our bootstrapped samples with a negative distance.

In sum, we can conclude this analysis by stating that the combination of neo-

additive survival beliefs with the assumption of naivety has to be considered as the

best candidate– out of our considered specifications of naive NEO, sophisticated NEO,

and RE models– for accommodating the joint occurrence of low retirement savings, time

inconsistent saving behavior and high old-age asset holdings.

6.2.2 The Effects of Experience

Our baseline results are based on age-dependent non-additive survival beliefs. To inves-

tigate whether a model of the Bleichrodt and Eeckhoudt (2006) or Halevy (2008) type

who consider non-additive survival beliefs according to some age-independent probabil-

ity weighting function, cf. our discussion in Section 3.2, fits the data better, we next

analyze the importance of our assumed experience function for life-cycle asset holdings.

To this end we assume constant experience by setting e(h) = n for some n ∈ N which
implies that δh = δ̄ and λh = λ̄ for all h. Observe that the three parameters n, δ, λ

are not separately identified in this specification. We therefore directly estimate δ̄, λ̄,

giving δ̄ = 0.565 and λ̄ = 0.424 (with respective confidence intervals of [0.54, 0.59]

and [0.41, 0.44]). This results in a counterclockwise tilting of the subjective survival

belief functions relative to the baseline (shown in Figure 3) so that the initial blip in-

creases. In our baseline specification, the subjective belief of a 20-year old to survive to

age 21 is 0.811, cf. Panel (a) of Figure 3, in the model variant with constant experience

it is only 0.675. We also reestimate the discount rate as our second stage parameter as
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outlined in Section 5. For both NEO models it decreases slightly, from 3.5% to 3.2%

for the naive and from 3.9% to 3.8% for the sophisticated NEO model (with respective

confidence intervals of [2.96, 3.57]% and [3.57, 4.05]%).

As shown in Table 5 the key quantitative implications of our model are little affected

by these changes of the experience function. Because of the increased relative pessimism

(survival beliefs are initially more strongly underestimated), the average saving rate

decreases slightly for both NEO types. This also leads to an increase of the difference

between planned and realized saving rates for naive NEO agents. Since survival functions

are flatter than in the baseline model overestimation is stronger in old age so that old-age

asset holdings are also higher than in the baseline model.

Table 5: Summary Statistics: The Effects of Experience

Naive NEO Sophisticated NEO Data

baseline e(h) = n baseline e(h) = n

Saving rate 10.7% 10.6% 10.2% 10.0% 9.5%

[10.1, 11.5]% [10.0, 11.3]% [9.6, 10.9]% [9.4, 10.7]% −
Saving rate, plan 14.9% 16.6% − − −

[14.3, 15.7]% [16.0, 17.3]%

Assets: 75 to 62 78.1% 79.6% 80.3% 81.8% 71.9%

[76.9, 79.4]% [78.5, 80.8]% [79.2, 81.6]% [80.8, 83.0]% [64.4, 80.8]%

Assets: 85 to 62 57.9% 59.9% 62.8% 65.0% 53.4%

[56.2, 59.8]% [58.3, 61.8]% [61.2, 64.7]% [63.4, 66.8]% [44.8, 66.7]%

Assets: 95 to 62 36.9% 38.4% 44.4% 46.4% 46.7%

[35.1, 38.9]% [36.6, 40.6]% [42.6, 46.4]% [44.6, 48.5]% [18.7, 102.3]%

Notes: Results for the NEO model with constant experience, e(h) = n. See Table 3 for a description

of how the statistics are constructed.

Importantly, the p-values of the overidentification tests are lower compared to the

baseline model, indicating a worse model fit. They are now at 1.2% (0.8%) for the naive

(sophisticated) NEO model. This is confirmed by the tests against the RE life-cycle

model which now indicates that the naive, respectively sophisticated, NEO life-cycle

model performs worse in 5.6%, respectively 27.6% of cases (compared to 2.4% and 12.6%

in the baseline model). When testing our baseline specification of the NEO model with

changing experience against the one with constant experience then the Null hypothesis

that the model with constant experience performs better than the baseline model is fully

rejected for the sophisticated agent (p-value of 0.0%) and rejected for the naive agent

at a 10% level of statistical significance (the p-value is 7.2%).
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We can therefore conclude that age-increasing degree of ambiguity is quite an impor-

tant element for the naive NEO model’s success of accommodating the joint occurrence

of low retirement savings, time inconsistent saving behavior and high old-age asset hold-

ings.

6.2.3 The Effects of Discounting

The calibrated discount rate varies across all model variants in our baseline results, cf.

Table 2. These results hence do not allow us to make statements about the “pure”

behavioral effects of changing the model specification. In this section, we therefore

address two aspects:

1. When moving from the RE to the naive NEO model, what are the “pure”effects

of changing the structure of survival belief formation?

2. When comparing the naive NEO to the sophisticated NEO model, what are the

“pure”effects of sophistication?

To address the first question, we hold constant the discount rate at the value cali-

brated for the RE life-cycle model of 3.84% and feed this into the naive NEO life-cycle

model (instead of using the parameter estimate for the discount rate of our baseline

calibration of 3.47%, cf. Table 2). That way we can single out the pure effects of sub-

jective survival belief formation according to our theory relative to using the objective

survival rates. With the higher discount rate, savings of naive NEO model agents dur-

ing ages 25-54 are closer to the data than in the baseline model but the speed of asset

decumulation is also faster, compare columns 2 and 3 in Table 6. Overall, even with this

parametrization the fit of the naive NEO model to the data is better than for the RE

model: the function value is at 2.3 compared to 2.54 for the RE model (reported above

in Table 4). The Null hypothesis that the two models are identical can however (just)

not be rejected at the 10% level (the p-value is 12.0% instead of the 2.4% reported in

Table 4 for our baseline calibration).

To address the second question, we next hold constant the value of the discount

rate calibrated for the naive NEO model of 3.47% and feed this into the sophisticated

NEO model (instead of using the higher parameter estimate of 3.94%). The reason

for this high baseline estimate is that sophisticates foresee the dynamically inconsistent

saving behavior of their own future selves, in particular their own increased tendency

to become optimistic. All else equal, this leads to higher old age asset holdings relative

to the naive NEO model. To (at least partially) offset this, the estimation determines

such a relatively higher discount rate. Holding the discount rate instead constant hence
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allows us to single out the pure effects of sophistication. By comparing columns 4 and 5

in Table 6 we indeed observe that holding the discount rate constant leads sophisticates

to save substantially more than in the baseline model: the saving rate increases by more

than one percentage point and asset holdings in old age are 2-4 percentage points higher.

Table 6: Summary Statistics: The Effects of Discounting

Naive NEO Soph. NEO Data

baseline ρRE baseline ρnaive NEO

Saving rate 10.7% 9.7% 10.2% 11.5% 9.5%

[10.1, 11.5]% [9.0, 10.6]% [9.6, 10.9]% [10.8, 12.2]% −
Saving rate, plan 14.9% 14.0% − − −

[14.3, 15.7]% [13.2, 14.8]%

Assets: 75 to 62 78.1% 76.3% 80.3% 82.6% 71.9%

[76.9, 79.4]% [74.9, 78.1]% [79.2, 81, 6]% [81.4, 84.0]% [64.4, 80.8]%

Assets: 85 to 62 57.9% 55.4% 62.8% 66.2% 53.4%

[56.2, 59.8]% [53.3, 57.9]% [61.2, 64.7]% [64.4, 68.3]% [44.8, 66.7]%

Assets: 95 to 62 36.9% 34.2% 44.4% 48.1% 46.7%

[35.1, 38.9]% [32.0, 37.0]% [42.6, 46.4]% [46.1, 50.3]% [18.7, 102.3]%

Notes: Results for the naive NEO model with constant discount rate, ρ = ρRE in column 3. Results

for the sophisticated NEO model with constant discount rate, ρ = ρnaive NEO in column 5. See

Table 3 for a description of how the statistics are constructed.

7 Concluding Remarks

This paper constructs and parameterizes a life-cycle model that describes consumption

and saving behavior of a Choquet expected utility maximizing agent with respect to age-

dependent neo-additive survival beliefs. As a novelty to the literature, these motivational

survival beliefs are derived from a Choquet Bayesian learning model that incorporates

the well-documented cognitive shortcoming of likelihood insensitivity.

We show that the agents of our model behave dynamically inconsistent whenever

the NEO life-cycle model does not reduce to the rational expectations (RE) life-cycle

model, which is nested as a special limit case of our approach. Next, we calibrate our

neo-additive survival beliefs with HRS data on subjective survival beliefs. As a result,

we can replicate the stylized fact that young people underestimate whereas old people

overestimate their survival chances. Applied to our life-cycle model, NEO agents save

less at younger ages than they actually planned to save. Due to underestimation of
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survival at young age, NEO agents also save less than RE agents. Despite this tendency

to undersave, NEO agents eventually have higher asset holdings after retirement because

of the overestimation of survival probabilities in old age. Overall, the calibrated NEO

model provides an accurate quantitative picture of life-cycle asset holdings until about

age 85. Furthermore, the assumption of naive NEO agents better fits the data than

the assumption of sophisticated NEO agents. Our (naive) NEO life-cycle model can

therefore accommodate three stylized findings from the empirical literature: (i) time

inconsistency of agents, (ii) undersaving at younger ages and (iii) high old age asset

holdings.

We present a very specific interpretation of the data on subjective survival beliefs,

develop a theory of a representative agent who learns about her prospect of survival

and updates her beliefs accordingly and combine this model with an ex ante representa-

tive agent consumption life-cycle model. Our approach naturally opens several avenues

of future research. First, in our ongoing empirical research we take into account the

cross-sectional heterogeneity in the data by investigating how individual specific biases

in survival assessments in the HRS are affected by several covariates measuring health

whereby we take newly available psychological variables as well as measures of cogni-

tive skills into account. Preliminary findings are consistent with the theory developed

in this paper. Second, we plan to investigate possible alternatives to our present cali-

bration of neo-additive survival beliefs (which enter as decision weights into a Choquet

expected utility maximization problem) through these probability judgments. Experi-

mental evidence suggests that decision weights tend to have a more pronounced inverse

S-shape than probability judgments; however, the formal details of this relationship

appear to be very context specific.32 Third, building on Epper et al. (2011) we will

compare the formal relationship between quasi-hyperbolic time-discounting, on the one

hand, and our NEO model, on the other hand. Finally, we would like to extend our

framework to address normative questions on the optimal design of the tax and transfer

system, similar to Laibson et al. (1998), Imrohoroglu et al. (2003) and, more recently,

Pavoni and Yazici (2012, 2013) in the hyperbolic time discounting literature.

32For example, in an experimental situation with option traders Fox et al. (1996) observe that

probability judgments and decision weights coincide. For the according literature see the references on

p. 292 in Wakker (2010).
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A Appendix: Proof of Propositions

A.1 Proof of Proposition 1

First, note that for arbitrary α and β,

µ
(
Ĩe(h) = j

)
=

(
e (h)

j

)
(α + j − 1) · ... · α · (β + e (h)− j − 1) · ... · β

(α + β + e (h)− 1) · ... · (α + β)
, (40)

for j ∈ {0, ..., e (h)} .

The uniform distribution is characterized by α = β = 1, implying for (40) that

µ
(
Ĩe(h) = j

)
=

(
e (h)

k

)
k! (e (h)− k)!

(e (h) + 1) · e (h)!

=
1

1 + e (h)
.

That is, for any number of possible survivors j ∈ {0, ..., e (h)} the ex ante probability
to actually observe this number for a sample of size e (h) is, by A1, identically given as

1
1+e(h)

. Substituting this probability back into (13) gives (16).

Next, substitute α = β = 1 and j
e(h)

= ψk,t in (4) to obtain (15). Finally, collect

terms and substitute into (12).�

A.2 Proof of Proposition 2

Fix age h and consider the neo-additive probability space
(
Ω,F , νhh

)
of Definition 2. By

straightforward transformations, we obtain that

T∑
t=h+1

ψ (Dt | Zh)
t∑

s=h+1

βs−hE [u (cs) , π (ηs|ηh)]

=
T∑

t=h+1

βt−hE [u (ct) , π (ηt|ηh)] · ψ (Dt ∪ ... ∪DT | Zh)

=

T∑
t=h+1

βt−hE [u (ct) , π (ηt|ηh)] · ψh,t.
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Consequently, (26) can be equivalently rewritten as

E
[
U (c) , νhh

]
= δh

(
λh

(
u(ch) +

T∑
t=h+1

βt−hE [u (ct) , π (ηt|ηh)]
)

+ (1− λh)u(ch)

)

+ (1− δh)
(
u(ch) +

T∑
t=h+1

ψ (Dt | Zh)
t∑

s=h+1

βs−hE [u (cs) , π (ηs|ηh)]
)

= u(ch) + δhλh

T∑
t=h+1

βt−hE [u (ct) , π (ηt|ηh)]

+ (1− δh)
T∑

t=h+1

ψh,t · βt−hE [u (ct) , π (ηt|ηh)]

= u(ch) +
T∑

t=h+1

νhh,t · βt−hE [u (ct) , π (ηt|ηh)] ,

which proves the proposition.�

A.3 Proof of Proposition 4

The value functions of self h in periods h and h+ 1 are given by

V h
h (xh, ηh) = max

ch,xh+1

{
u (ch) + βνhh,h+1Eh

[
V h
h+1

(
xh+1, ηh+1

)]}
V h
h+1

(
xh+1, ηh+1

)
= max

ch+1,xh+2

{
u (ch+1) + β

νhh,h+2

νhh,h+1

Eh+1

[
V h
h+2

(
xh+2, ηh+2

)]}
.

For self h+ 1 we accordingly have

V h+1
h+1

(
xh+1, ηh+1

)
= max

ch+1,xh+2

{
u (ch+1) + βνh+1

h+1,h+2Eh+1

[
V h+1
h+2

(
xh+2, ηh+2

)]}
.

The first-order conditions with respect to consumption for selves h and h+ 1 are:

du

dch
= βRνhh,h+1Eh

[
∂V h

h+1(·)
∂xh+1

]
(41a)

du

dch+1

= βRνh+1
h+1,h+2Eh+1

[
∂V h+1

h+2 (·)
∂xh+2

]
. (41b)
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The derivative of the value function writes as

∂V h
h+1(·)
∂xh+1

=
du

dch+1

mh+1 + βR
νhh,h+2

νhh,h+1

(1−mh+1)Eh+1

[
∂V h

h+2(·)
∂xh+2

]
(42)

= mh+1

(
du

dch+1

− βR
νhh,h+2

νhh,h+1

Eh+1

[
∂V h

h+2(·)
∂xh+2

])
︸ ︷︷ ︸
6=0, i.e., the envelope condition does not hold.

+ βR
νhh,h+2

νhh,h+1

Eh+1

[
∂V h

h+2(·)
∂xh+2

]
where mh+1 ≡ ∂ch+1

∂xh+1
.

Rewrite (41b) by adding and subtracting terms as

du

dch+1

= β (1 + r) νh+1
h+1,h+2Eh+1

[
∂V h+1

h+2 (·)
∂xh+2

]

+ β (1 + r) νh+1
h+1,h+2Eh+1

[
∂V h

h+2(·)
∂xh+2

−
∂V h

h+2(·)
∂xh+2

]
to get

βREh+1

[
∂V h

h+2(·)
∂xh+2

]
=

du

dch+1

1

νh+1
h+1,h+2

+ βREh+1

[
∆V h,h+1

h+2

]
, (43)

where ∆V h,h+1
h+2 ≡

[
∂V hh+2(·)
∂xh+2

− ∂V h+1h+2 (·)
∂xh+2

]
.

Next, use (43) in (42) to get

∂V h
h+1(·)
∂xh+1

=
du

dch+1

mh+1 +
νhh,h+2

νhh,h+1

(1−mh+1)

(
du

dch+1

1

νh+1
h+1,h+2

+ βREh+1

[
∆V h,h+1

h+2

])

=
du

dch+1

(
mh+1 +

νhh,h+2

νhh,h+1ν
h+1
h+1,h+2

(1−mh+1)

)
+ βR

νhh,h+2

νhh,h+1

(1−mh+1)Eh+1

[
∆V h,h+1

h+2

]
.

Using the above in (41a) and simplifying the resulting expression we finally get (33)—(35).

�

B Appendix: Details on HRS Data, SCF Data and

Bootstrap Procedure

B.1 HRS Data

Interview and target ages in the HRS are assigned according to the pattern in Table 7.

Otherwise see Ludwig and Zimper (2013) for a detailed description of the data.

52



Table 7: Interview and Target Age in the HRS

Age at Interview j Target Age m

≤69 80

70-74 85

75-79 90

80-84 95

85-89 100

B.2 SCF Data

The Survey of Consumer Finances (SCF) is a representative triennial cross-sectional

survey of U.S. families sponsored by the Federal Reserve Board in cooperation with the

Department of the Treasury. We merge data from the six waves (1992, 1995, 1998, 2001,

2004 and 2007). We use households whose heads are aged 30-95. Our total sample

contains N = 20.368 respondents.

To construct the average life-cycle profile of normalized assets we define assets as

net worth including housing wealth, but excluding implicit pension and social security

wealth.33 We deflate assets and income to 1992 Dollars and detrend the data. To ap-

proximate permanent income we first compute gross labor and social security income by

excluding income from capital gains.34 Using data from Cagetti (2003)– who approx-

imates tax rates for different income percentiles– we next compute after-tax income.

Due to multiple imputations, the SCF delivers five observations per respondent together

with appropriate weights which we divide by 5 to get an appropriate descriptive statistic

per respondent.35 Next, we compute the weighted average of age-specific net income and

net worth. Using the average we evaluate the net-present value of income and convert

this to annuities using the calibrated interest rate of r = 0.042. This gives our perma-

nent income approximation. Finally, we normalize assets with the computed permanent

income. This leaves us with a vector of 66 data moments used for the SMM procedure.

33To construct the data we adopt the approach described in Chris Carroll’s lecture notes,

cf. http://www.econ2.jhu.edu/people/ccarroll. We thank Chris Carroll for providing us the Stata code.
34The income measure includes ’wages and salaries’, ’unemployment or worker’s compensation’, ’child

support or alimony’, ’TANF, food stamps, or other forms of welfare or assistance’, ’net income from

Social Security or other pensions’, ’annuities, or other disability or retirement programs’and ’any other

sources’. We exclude some few observations with negative income values.
35See the codebook for further details, e.g., http://www.federalreserve.gov/econresdata/scf/files/codebk2013.txt.
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B.3 Bootstrap

We apply two procedures to bootstrap our data. First, we simultaneously consider both

uncertainties stemming from the HRS data on subjective survival beliefs at the first stage

and from the SCF data on asset holdings at the second stage. Our results reported in

the main text are based on this procedure. While this approach is appropriate when

comparing across nested models, we cannot take into account the correlation between

survival beliefs and savings behavior in the data because we draw from two different

data sources (the subjective survival beliefs from the HRS and the asset data from the

SCF). To investigate how important first stage sampling uncertainty is for statistical

inference, we consider as a second approach only uncertainty with respect to normalized

assets, i.e., we only bootstrap at the second stage. For both approaches, we implement

the bootstrap by drawing with replacement B = 500 bootstrap samples b = 1, . . . , B.

To construct the J test we adopt the pivotal refinement approach proposed by Hall

and Horowitz (1996). The general idea is to set up a test statistic J where its distribution

does not depend on unknown parameters. To this end, we first draw all N individuals

from the original data sample with probability 1/N. Since each individual contains five

observations in the SCF we perform a block-bootstrap such that for each draw we have

five observations. For each bootstrapped sample we compute the corresponding wealth

to permanent income ratio and the age-specific weights as described below. We denote

the normalized wealth to permanent income ratio in each bootstrap draw as āybt .

We proceed by describing the first bootstrap procedure which takes into account

first-stage sampling uncertainty. Collect in ϑ̂1 all first-stage parameter estimates de-

spite [δ̂, λ̂] and split ϑ̂ as [δ̂, λ̂, ϑ̂1]. In each bootstrap iteration b, we reestimate [δ̂
b
, λ̂

b
]

by drawing with replacement from the subjective survival data in the HRS, also see

Ludwig and Zimper (2013). Given [δ̂
b
, λ̂

b
], we then estimate parameter ρ̂b by minimizing

a re-parameterized loss function given by

J̃
(
ρ, δ̂

b
, λ̂

b
, ϑ̂1; ρ̂, δ̂, λ̂

)
= m̃

(
ρ, δ̂

b
, λ̂

b
, ϑ̂1; ρ̂, δ̂, λ̂

)′
Wm̃

(
ρ, δ̂

b
, λ̂

b
, ϑ̂1; ρ̂, δ̂, λ̂

)
where each age t entry of the vector of demeaned moment conditions m̃(·) is given by

m̃t

(
ρ, δ̂

b
, λ̂

b
, ϑ̂1; ρ̂, δ̂, λ̂

)
=
(
aybt − āyt

(
ρ, δ̂

b
, λ̂

b
, ϑ̂1

))
−
(
āydt − āyt

(
ρ̂, δ̂, λ̂, ϑ̂1

))
. (44)

aydt is the asset to permanent income ratio from the original data sample. Notice that

term āydt − āyt
(
ρ̂, δ̂, λ̂, ϑ̂1

)
is a constant which depends on first and second stage para-

meter estimates. Minimization in bootstrap iteration b gives the bootstrap estimate

ρ̂b(δ̂
b
, λ̂

b
, ϑ̂1; ρ̂, δ̂, λ̂) = arg min

ρ
J̃
(
ρ, δ̂

b
, λ̂

b
, ϑ̂1; ρ̂, δ̂, λ̂

)
.
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The p-value of the J-test for overidentifying restrictions is computed as

p (J (ρ̂, ·)) =
1

B

B∑
b=1

I
(
J̃(ρ̂b, ·) > J (ρ̂, ·)

)
,

where I is an indicator function equal to 1 if its argument is true and 0 otherwise, see

Davidson and MacKinnon (2002). Observe that the (original) function value without de-

meaning, J(ρ̂), enters on the right-hand-side of the inequality in the above. The model is

rejected (on statistical grounds) if the p-value is low (less than 5% for a conventional level

of statistical significance), i.e., if there are too few cases in which the demeaned function

value exceeds the original one. The intuition is as follows: If the model is a statistically

correct description of the data, then the constant term āydt − āyt
(
ρ̂, δ̂, λ̂, ϑ̂1

)
– which is

deducted from each moment condition in the process of demeaning, cf. equation (44)–

is small in absolute value relative to the sampling uncertainty to the effect that the

difference between function values based on demeaned moments, J̃(·), and original mo-
ments, J(·), is small. Hence there would be suffi ciently many cases in which J̃(·) > J(·).
To compute confidence intervals and to evaluate the RE model against the two NEO

alternatives, i.e., to compare nested models, we instead compute a distribution of func-

tion values without demeaning, depending on reestimated ˆ̂ρb, J
(

ˆ̂ρb, δ̂
b
, λ̂

b
, ϑ̂1

)
, i.e., pa-

rameter estimates and function values based on the raw moment conditions

mt

(
ˆ̂ρb, δ̂

b
, λ̂

b
, ϑ̂1

)
= āybt − āyt

(
ˆ̂ρb, δ̂

b
, λ̂

b
, ϑ̂1

)
.

We compute confidence bands by using the percentile method. Similarly, we conduct

inference by comparing distributions of J (ρ) across models. Accordingly, we compute

the p-value as

p
(

∆J
(

ˆ̂ρ, ·
))

=
1

B

B∑
b=1

I
(

∆J(ˆ̂ρ) < 0
)

where ∆J(ˆ̂ρ) = J
(

ˆ̂ρb,RE, ·
)
− J

(
ˆ̂ρb,NEO

)
,

and where I again is an indicator function equal to 1 if its argument is true and 0

otherwise. ˆ̂ρb,RE (ˆ̂ρb,NEO) is the parameter estimate in bootstrap iteration b of the RE

(the respective NEO) model. If the fraction p
(

∆J
(

ˆ̂ρ, ·
))

is small– say less than 5%

for conventional levels of statistical significance– then the RE model is rejected against

the respective alternative NEO model.

For our second approach we apply identical methods but do not bootstrap on the

first-stage survival beliefs data. Formally, this approach is nested in the above by re-

placing δ̂
b

= δ̂, λ̂
b

= λ̂ for all b = 1, . . . , B. Results reported in Table 8 are very similar

because first-stage parameters are estimated with high precision, cf. Table 1.
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Table 8: Sensitivity Analysis: Bootstrap Method

naive NEO sophisticated NEO

1st and 2nd only 2nd 1st and 2nd only 2nd

Discount Rate, ρ̂ 0.0347 0.0394

Confidence Band [0.0320, 0.0372] [0.0322, 0.0370] [0.0368, 0.0416] [0.0368, 0.0415]

Function Value 2.0619 2.2229

p-value 1.4% 1.4% 1.0% 1.0%

Average Distance 0.5024 0.5036 0.3448 0.3464

p-value 2.4% 2.2% 12.6% 13.6%

Notes: This table documents the sensitivity of our main results with respect to the bootstrap

method. Our baseline results from Tables 2 and 4 are restated in column “1st and 2nd”, column

“only 2nd”are the corresponding results where we only consider second stage sampling uncertainty.

The age-specific weights of weighting matrix W are the fraction of observations for

each age-bin. Figure 5 depicts the normalized assets and the corresponding weights.

When displaying results in the main text, we compare simulated life-cycle asset profiles

with smoothed data, whereby we apply a cubic spline regression. The left panel of

Figure 5 displays the corresponding original and smoothed data.

Figure 5: Empirical Moments of the MSM and Weights
Normalized Assets, ādatat

(ȳpt )data
Age-Specific Relative Weights, W
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Notes: Left Panel: Normalized life-cycle average assets from the SCF (black line) and smoothed

data with cubic spline (dashed grey line). Right Panel: Age-specific weights used for the SMM in

equation (38). The weights are computed as the fraction of individuals in the respective age-bin.
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