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Non-Technical Summary 
 

The first critical illness (CI) insurance (also known as dread disease insurance) was 
developed in South Africa in 1983. The insurance pays a previously fixed lump sum if 
the insured person is diagnosed with a critical illness from a list of insured illnesses. 
Although the CI insurance is becoming more popular, it is still rarely used in Germany 
compared with disability insurance or other health-related insurance products. The 
relatively low demand for CI insurance is surprising due to the possible benefits. To give 
an example, blindness or deafness are critical illnesses that are often covered by a CI 
insurance. These illnesses might or might not trigger a disability insurance and lead to 
large costs that are not fully covered by a health insurance. A handicapped-accessible 
house, books for blind persons, or a special computer produce large costs. Since the 
expected lifetime is usually not reduced, this messes up the financial planning. I model 
such illnesses with health shocks in the model. Cancer or a heart attack are examples 
for insurable critical illnesses that reduce the expected remaining lifetime and might or 
might not trigger a disability insurance as well. These illnesses also produce large costs, 
e.g. for medicine and health care. Mortality shocks in my model capture such illnesses. 
The seemingly huge benefits of the CI insurance raise the question why there is little 
demand for this type of insurance. To the best of my knowledge, there is no life cycle 
model explicitly considering such an insurance. 

I consider a life cycle consumption-investment-insurance problem in continuous time. 
The agent has to pay exogenously determined health expenses that can jump due to a 
critical illness of the agent. In order to avoid the excess health expenses, the agent can 
contract a CI insurance. The agent receives unspanned labor income and decides about 
the optimal consumption, investment, and insurance strategy. The financial market 
consists of a riskless bond and a stock. The time of death is random. The hazard rate of 
death can jump due to a mortality shock. A critical illness may lead to an increased 
mortality risk but this is not necessarily the case. In this work, I analyze whether the 
agent wants to contract the CI insurance or not. Moreover, I investigate the driving 
factors of the resulting CI insurance demand. 

The increased health expenses due to a shock have a crucial impact both for the 
aggregate results and for the individual results. Middle-aged agents (age 45) are more 
than 40% better off if they do not face jumps in the health expenses. Consequently, 
there is a huge demand for the CI insurance. Until the age of 50, nearly all agents 
contract the CI insurance, even if the insurance profit is set to 200%. With human 
wealth becoming less uncertain when approaching retirement, the CI insurance 
demand decreases since a more certain income can be better used to counter the 
effects of a health expense jump. However, still more than 50% of the agents contract 



the insurance during retirement with an insurance profit set to 20%. Middle-aged 
agents are about 18% better off when having access to this insurance. Before 
retirement when income is uncertain, low actual health expenses and a high actual 
income support the insurance decision. During retirement with certain income, either a 
low income or low health expenses can prevent the agent from contracting the 
insurance. A low income volatility and a low level of risk aversion decrease the demand 
for the CI insurance. The insurance demand also reduces significantly if agents 
underestimate the health expense effect of jumps or the health jump intensity. 

To summarize, I find that agents strongly benefit from the possibility to hedge jumps in 
the health expenses, even if the insurance is very costly. Especially before retirement 
nearly all agents contract the CI insurance, due to the uncertainty in income.  
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expenses, and the income. In order to hedge the health expense effect of a

shock, the agent has the possibility to contract a critical illness insurance.
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1 Introduction

A critical illness (CI) insurance delivers a fixed payment if the insured person is diagnosed

a critical illness from the list of insured illnesses. Although the CI insurance is growing in

popularity, there is to the best of my knowledge no life cycle model explicitly considering

such an insurance.

I consider a life cycle consumption-investment-insurance problem in continuous time.

The agent has to pay exogenously determined health expenses that can jump due to a

critical illness of the agent. In order to avoid the excess health expenses, the agent can

contract a CI insurance. The agent receives unspanned labor income and decides about the

optimal consumption, investment, and insurance strategy. The financial market consists

of a riskless bond and a stock. The time of death is random. The hazard rate of death

can jump due to a mortality shock. A critical illness may lead to an increased mortality

risk but this is not necessarily the case. In this work, I analyze whether the agent wants

to contract the CI insurance or not. Moreover, I investigate the driving factors of the

resulting CI insurance demand.

The health expense effect of shocks has a crucial impact both for the aggregate results

and for the individual results. Middle-aged agents (age 45) are more than 40% better off if

they do not face jumps in the health expenses. Consequently, there is a huge demand for

the CI insurance. Until the age of 50, nearly all agents contract the CI insurance, even if

the insurance profit is set to 200%. With human wealth becoming less uncertain when

approaching retirement, the CI insurance demand decreases since a more certain income

can be better used to counter the effects of a health expense jump. However, still more than

50% of the agents contract the insurance during retirement with an insurance profit set to

20%. Middle-aged agents are about 18% better off when having access to this insurance.

Before retirement when income is uncertain, low actual health expenses and a high actual

income support the insurance decision. During retirement with certain income, either a

low income or low health expenses can prevent the agent from contracting the insurance.

A low income volatility and a low level of risk aversion decrease the demand for the CI

insurance. The insurance demand also reduces significantly if agents underestimate the

health expense effect of jumps or the health jump intensity.

The importance of the health status for investment and consumption decisions is

empirically analyzed in the literature with mixed results. The studies of Rosen and

Wu (2004), Berkowitz and Qiu (2006) as well as Fan and Zhao (2009) find a strong

relation between health status and portfolio choice. However, Love and Smith (2010)

disentangle the relation between health status and portfolio choice by analyzing which

part is causal and which is due to unobserved heterogeneity. They argue that health

has no significant impact on portfolio choice. Of course, one expects a strong relation
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between health expenses and health status. Since uncertain health expenses affect the

agents optimization problem in the same way as uncertain labor income does, it is a

reasonable assumption that health expenses have a significant impact on consumption

and investment decisions. The relevance of unspanned labor income for portfolio choice is

without doubt and among others highlighted by Viceira (2001) as well as Cocco, Gomes,

and Maenhout (2005).

Some recent papers include health expenses in a portfolio choice framework. Edwards

(2008, 2010) analyzes a retired investor with a Cobb-Douglas utility that depends on

consumption and health. In his model, agents that are unhealthy have to purchase

health. In this setup, he argues that health risk can partially explain the decrease in

risky investment for older people. Davidoff (2009) considers the annuity and the long-term

care insurance demand as well as the consumption decision for a retired house owner

with uncertain health status in a two-period model. The paper of Pang and Warshawsky

(2010) is most related to my work. They model stochastic health expenses for a retired

agent in a discrete-time model and analyze the impact on the optimal stock, bond, and

annuity portfolio. They show that health risk leads to less risky investment and increases

the annuity demand. Yogo (2012) focuses on the retirement state as well. He allows

for health expenditures as a choice variable besides consumption and investment. In a

discrete-time model, the agent optimizes utility from consumption, housing, and health.

In contrast to the papers mentioned in this paragraph, I do not restrict my analysis to the

retirement state. Furthermore, I analyze a CI insurance as a possibility to avoid excess

health expenditures.

The remaining paper is organized as follows. Section 2 introduces the model setup. In

Section 3, I calibrate the health expense process and present the calibrated parameters

that I use in the simulations. Section 4 analyses the health expense impact of shocks and

motivates the existence of a CI insurance. The CI insurance is calibrated in Section 5.

Furthermore, I present results for different values of the insurance profit. Section 6 gives

several sensitivity analyses with a special focus on the difference between the real-world

and model-based CI insurance demand. Finally, Section 7 concludes and presents ideas

for further research.

2 Model Setup

Financial Assets and Investment Decision There are two assets in the financial

market. The first one is a bond B that yields the constant risk-free rate r and the second
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one is a stock S with constant market price of risk λ and constant volatility σS. The

corresponding dynamics are given by

dBt = Btr dt,

dSt = St(r+σSλ)dt+StσS dWS
t ,

where WS = (WS
t ) is a standard Brownian motion. The agent continuously chooses θt

which is the fraction of financial wealth X t that he invests into the risky asset. The

remaining part, (1−θt)X t, is invested into the bond. I impose short-sale constraints such

that the agent is restricted to θt ∈ [0,1].

Mortality Risk The time of death, denoted by τ, is uncertain and is given by the first

jump of a jump process ND = (ND
t ) in intensity (hazard rate of death) π(t). The intensity

is increasing with age and can jump due to a mortality shock that permanently increases

the hazard rate of death. I interpret a mortality shock as a critical illness that highly

influences mortality risk, e.g. cancer. The time-dependent part of the mortality risk is

modeled with a Gompertz structure. The hazard rate of death is given by

π(t)= 1
b

e( t−m
b )+βπ(t) Nπ

t ,

where Nπ = (Nπ
t ) is a jump process with intensity κπ(t) and is independent of all other

sources of risk. In the model, Nπ is allowed to jump only once. Hence, the intensity κπ(t)
is set to zero after the first jump. I denote the time-dependent jump size by βπ(t), whereas

b and m are constant parameters that capture the increasing mortality risk over the life

cycle.

Health Expenses and Insurance Decision The agent faces health expenses that are

exogenously given and modeled by a geometric Brownian motion with time-dependent drift

µH(t) and volatility σH(t). The drift captures that average health expenses increase in

age. The diffusive part accounts for small deviations in health expenses, e.g. induced by a

common cold. Furthermore, the agent faces additional health expenses if a mortality shock

or a health shock occurs. The health shock increases the health expenses significantly

without increasing the mortality risk and can be interpreted as a psychical illness or a

physical disability. It is modeled by the jump process NH = (NH
t ) with intensity κH(t) and

independently of all other sources of risk. In the model, the health expenses can jump only

once. In order to hedge the health expense jump risk, the agent can contract an insurance.

The insurance decision is denoted by ι ∈ {0,1}. If insured, ι = 1, the insurance company

pays all excess health expenses due to a jump. The insurance premium depends on the

actual health expense level and is denoted by η(t)Ht. The insurance decision takes place
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continuously and is only contracted for an interval of length dt. Thus, the health expense

jump term becomes relevant only if the agent is uninsured, ι = 0. The health expense

dynamics are then summarized as

dHt = HtµH(t)dt+HtσH(t)dWH
t + 1{Nπ

t−+NH
t−=0∧ ιt−=0}Ht−βH(t)

(
dNπ

t +dNH
t

)
, (1)

where WH = (WH
t ) is a standard Brownian motion that is independent of all other sources

of risk. Here, βH(t) denotes the time-dependent health expense jump size.

Labor Income The agent receives a continuous income stream Y as long as he is alive.

The income can be interpreted as labor income before retirement and pension payments

after retirement. Additional to labor income uncertainty, the agent faces the risk of having

to reduce work effort permanently or getting disabled due to a mortality or health shock.

In this case, the income permanently reduces. The agent has no possibility to hedge the

income reduction. The labor income process is allowed to jump only once. The income

dynamics are given by

dYt =YtµY (t)dt+YtσY (t)dWY
t + 1{Nπ

t−+NH
t−=0}Yt−βY (t)

(
dNπ

t +dNH
t

)
(2)

with another standard Brownian motion WY = (WY
t ) that is independent of all other

sources of risk. The income drift µY (t), volatility σY (t), and jump magnitude βY (t) are

allowed to be time-dependent.

Preferences The agent gains utility from intermediate consumption c and terminal

wealth Xτ. The utility has a constant relative risk aversion with risk aversion parameter

γ. The time preference rate is given by δ and the weight of the bequest motive is denoted

by ε. Hence, lifetime utility at time t is given by

Et,x,y,h,A

[∫ τ

t
e−δ(u−t) c1−γ

u

1−γ du+εe−δ(τ−t) X1−γ
τ

1−γ

]
,

where A is a state variable that captures the current health status of the agent. A is

determined by the jump processes and defined as follows:

At =



1 (healthy) if NH
t = 0 ∧ Nπ

t = 0 ∧ ND
t = 0,

2 (health shock) if NH
t = 1 ∧ Nπ

t = 0 ∧ ND
t = 0,

3 (mortality shock) if Nπ
t = 1 ∧ ND

t = 0,

4 (dead) if ND
t = 1.
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A healthy agent, A = 1, faces health shock risk, mortality shock risk and death shock risk.

Agents that only faced a health shock, A = 2, have mortality shock risk and death shock

risk, further health shocks cannot occur. If an agent suffered a mortality shock, A = 3, he

only faces risk of dying since further health or mortality shocks are not possible.

Financial Wealth and the Optimization Problem The financial wealth of the agent

is denoted by X . The following wealth dynamics arise from the above model setup

dX t =
[
X t (r+λσSθt)+ yt − ct −ht − 1{Nπ

t +NH
t =0∧ ιt=1}htη(t)

]
dt+ X tσSθt dWS

t . (3)

The agent maximizes lifetime utility from consumption and terminal wealth. The op-

timization problem is characterized by the control variables consumption c, portfolio

holdings θ, and the insurance decision ι. The state variables are time t, financial wealth

x, income y, health expenses h, and the health state of the agent A. The optimization

problem is expressed as

max
{cu,θu,ιu}u∈[0,τ)

E0,x,y,h,A

[∫ τ

0
e−δu c1−γ

u

1−γ du+εe−δτ
X1−γ
τ

1−γ

]
s.t. dX t =

[
X t (r+λσSθt)+ yt − ct −ht − 1{At=1∧ ιt=1}htη(t)

]
dt+ X tσSθt dWS

t , (4)

and also includes short-sale constraints, θt ∈ [0,1], and liquidity constraints, i.e. the

optimal choice variables have to ensure X t > 0. I denote the corresponding value function

by J:

J(t, x, y,h, A)= sup
{cu,θu,ιu}u∈[t,τ)

Et,x,y,h,A

[∫ τ

t
e−δ(u−t) c1−γ

u

1−γ du+εe−δ(τ−t) X1−γ
τ

1−γ

]
. (5)

The Hamilton-Jacobi-Bellman (HJB) equation of the problem is given by

δJ = sup
c,θ,ι

{
c1−γ

1−γ + Jt + Jx
[
(r+λσSθ)+ y− c−h− 1{A=1∧ ι=1}hη

]+ 1
2

Jxxx2σ2
Sθ

2

+ Jy yµY + 1
2

Jyy y2σ2
Y + JhhµH + 1

2
Jhhh2σ2

H

+ 1{A=1}κH
[
J(t, x, (1+βY )y, (1+ 1{ι=0}βH)h,2)− J(t, x, y,h, A)

]
+ 1{A=1∨A=2}κπ

[
J(t, x, (1+ 1{A=1}βY )y, (1+ 1{A=1∧ ι=0}βH)h,3)− J(t, x, y,h, A)

]
+π [J(τ, x, y,h,4)− J(t, x, y,h, A)]

}
, (6)

for A = {1,2,3}. Subscripts of J denote partial derivatives, for example Jt = ∂J
∂t . I solve

the optimization problem numerically. An outline of the solution method is described in

Appendix A.
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Figure 1: Shock Distribution. The figure depicts the histogram of the shocks after 1000000 simulations
and the corresponding state distribution. a) shows the death shock distribution. b) depicts the histogram of
the mortality shocks. c) presents the health shock distribution. d) depicts the resulting state distribution
over the lifetime. The areas from bottom left to top right are explained as follows: The dark area corresponds
to healthy agents (A = 1), the dark grey area to agents that faced a health shock (A = 2), the light grey area
represents agents that faced a mortality shock (A = 3), and the light area indicates dead agents (A = 4). The
processes are calibrated as stated in Section 3.

3 Calibration

Financial Assets My financial market calibration is based on Munk and Sørensen

(2010). I set the risk-free rate to r = 0.02. I calibrate the stock with a market price of risk

of λ= 0.2 and I set the volatility parameter to σS = 0.2.

Mortality Risk I use the mortality process and mortality shock calibration of Kraft,

Schendel, and Steffensen (2014). They interpret the mortality shock as critical illness as

well and calibrate it with cancer data for Germany. The intensity and magnitude of the

mortality shock are given by

κπ(t)= 0.02489e
(

min(t,65)+66.96
29.42

)2

,

βπ(t)= 0.048+0.0008t.
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Figure 2: Health Expense Calibration. The figure compares the average health expenses after 1000000
simulations (line) with the data for Germany (points). The calibration for the simulated results is stated
in Section 3. The data points represent average health expenses in Germany provided by Statistisches
Bundesamt. The data yields average costs for the age intervals 15-29,30-44,45-64,65-84, and 85+. I draw
the data points in the middle of the corresponding interval and assume a length of 20 years for the last
interval. The insurance is not used here (ιt = 0∀t).

The mortality process is calibrated with mortality data for Germany. The results for the

parameters are b = 6.5 and m = 69.45. Figure 1 depicts the resulting death shock and

mortality shock distribution after 1000000 simulations.

Health Expenses I calibrate the health expenses using data for Germany.1 The data

provides the average medical expenses in 2008 for six age groups. I calibrate the health

jump together with the health expense drift and diffusion such that the resulting health

expenses match the data. Since I do not have data for very old agents, I assume that the

health expense pattern remains unchanged for agents that are older than 100. In order to

simplify notation, I set: t̃ =min(t,80). I calibrate the health jump intensity and magnitude

according to

κH(t)= 1
20.5

e
(

t̃−88.45
20.5

)
,

βH(t)= 6
(
e0.01t̃

)−1 +0.08t̃−0.0008t̃2.

The drift and volatility of the health expense process are calibrated with

µH(t)= 0.0055+0.0004t̃−0.0000137t̃2 +0.000000187t̃3,

σH(t)= 0.03.

1 The German health expense data is taken from “Statistisches Bundesamt, Wirtschaft und
Statistik Juli 2011, p. 666”, available online at: https://www.destatis.de/DE/Publikationen/
WirtschaftStatistik/Monatsausgaben/WistaJuli11.pdf, last access: January 21, 2014.
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Figure 3: Health Expenses, Parameters and the Jump Effect. a) depicts the average health expenses
after 1000000 simulations if shocks have no impact on the health expenses (i.e. βH = 0) H̃ (dark line) and
compares it to the benchmark case including the health expense impact of the shocks H (grey line). b)
presents the effect of a health jump. The dark line is the average jump size H̃βH after 1000000 simulations
and the grey line gives the corresponding average health expenses immediately after a jump H̃(1+βH). c)
depicts the health expense parameter calibration: the jump intensity κH (dark line), the drift parameter µH
(grey line), and the volatility σH (light line). The corresponding calibration used in the three graphs is given
in Section 3. The insurance is not used here (ιt = 0∀t).

I set the initial value to H0 = 1300 which is a EUR 2008 value. Figure 2 compares the

simulated health expenses with the above calibration to the German health expense data.

The figure highlights that the simulated health expenses fit the data well. Figure 3 a)

compares the average health expenses with and without the health expense effects of the

shocks if the agents are not insured. The huge difference stresses the importance of the

health expense jump for the agents. The difference between those lines would be captured

by the insurance, if contracted. b) depicts the average jump size and the average health

expenses after a jump. Intuitively, they are increasing with age. c) depicts the health jump

intensity and health expense parameters over the lifetime. Figure 1 c) shows the resulting

health shock distribution after 1000000 simulations. In the sample, 21.1% of the agents

face a health shock. Furthermore, 45.6% of the population suffer a mortality shock that

also increases health expenses for agents that had no health shock before. Figure 1 d)

depicts the resulting state distribution over the life cycle. We see that most agents are

either healthy or dead and only few are at the states with high health expenses at the

same time.

Labor Income I calibrate the drift of the income process as in Munk and Sørensen

(2010). They use PSID (Panel Study of Income Dynamics) data that yields the income

dependent on the education level. The drift polynomial was originally estimated by Cocco,

Gomes, and Maenhout (2005) for a discrete-time setup. They assume that the agent
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Figure 4: Expected Labor Income over the Life Cycle. The figure depicts the expected labor income
profile over the life cycle after 1000000 simulations with the calibration given in Section 3. The solid line
represents the earnings profile of all living agents, whereas the dashed line denotes the expected earnings
of all agents (i.e. dead agents are included with zero income).

retires at the age of 65 and the drift is set to zero afterwards. The retirement income is a

fraction of the last income before retirement. I use the continuous-time version of Munk

and Sørensen (2010) which smooths the income reduction at retirement. The drift for the

college education level is then given by

µY (t)= 1{t<45}
(
0.3394−0.01154t+0.000099t2)− 1{45≤t≤46}0.06113.

For the diffusive component, I assume that retirement income is riskless in contrast to

labor income before retirement. The diffusive component is calibrated by

σY (t)= 1{t<45}0.15.

In the case that a health jump or a mortality jump occurs, the labor income is reduced

since the agent has to reduce work effort or gets disabled. I calibrate the jump size as

βY (t)=−1{t≤45}0.2.

Hence, the labor income reduces by 20% if the agent is still working. In contrast, the

income remains unaffected if the agent is already retired. Last, I calibrate the initial

value Y0. Munk and Sørensen (2010) give a starting value for the college calibration of

13912 USD in 2002. To be consistent with the health expense calibration, I translate the

value to a 2008 value in EUR. In order to do this, I use the average EUR-USD closing mid

exchange rate (source: WM/Reuters via Datastream) in 2002. Afterwards, I assume that

the average income change follows the German consumer price index for the corresponding
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years (source: Statistisches Bundesamt)2. This results in Y0 = 16369. Figure 4 depicts the

average earnings profile over the life cycle.

Preferences I use standard values for the relative risk aversion γ= 4, the time prefer-

ence rate δ= 0.03, and the weight of the bequest motive ε= 1. The agent starts at the age

of 20 with a financial wealth equal to one year of labor income X0 =Y0.

4 Why a Critical Illness Insurance?

In this section, I justify the existence of a CI insurance in my model and comment on the

situation in the real-world insurance market. The calibration highlights a huge difference

in average health expenses depending on whether shocks have an impact on the health

expenses (βH 6= 0) or not (βH = 0) . Now, I analyze the impact of the health expense effect

of the shocks on the optimal controls for the aggregate results. Furthermore, I analyze the

effects for an individual agent who suffers from a health shock and/or from a mortality

shock.

Aggregate Results Figure 5 compares the financial wealth evolution and optimal

controls in a model with and without health expense effects of jumps. We see that the

existence of the health expense jump effect increases average financial wealth. The

fraction riskily invested is on average smaller and the consumption is reduced in early

years. The agents are afraid of the health expense effect of the shocks. Therefore, they

save more, consume less, and invest less riskily. Consequently, in later years, consumption

is higher due to a high amount of accumulated wealth. This explains that the average

bequest is higher as well. The differences between both models diminish for old ages

and vanish almost completely at the age of 100 since shocks become less important with

decreasing expected remaining lifetime.

Overall, we see that the existence of the health expense impact of the health and

mortality shock has a significant effect on the aggregate results. The inclusion of the

health expense effect of the jumps has qualitatively the same effect as an increase in risk

aversion.

Individual Results Figure 6 depicts the effects of the shocks for an individual agent

without insurance. The direct effect of a health shock at the age of 50 are a decreased

income and increased health expenses. The optimal reaction is less consumption and less

risky investment compared to agents without shock. Both effects are due to the reduced

2 Data available at: https://www-genesis.destatis.de, table code: 61111-0001, last access: January 21,
2014.
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Figure 5: Aggregate Effects of Health Expense Jumps without Insurance. The figure compares
the optimal controls and financial wealth evolution in two models without insurance (ιt = 0∀t). The dark
lines represent the benchmark model with health expense jumps, the grey lines are for a model in which
shocks have no impact on health expenses, i.e. βH = 0. The models are calibrated as stated in Section 3
and the results are averaged after 100000 simulations. a) depicts the financial wealth evolution, b) shows
consumption, c) plots the average health expenses, and d) gives the fractions of wealth invested into the
risky asset. Solid lines represent results for living agents (A 6= 4) only and dashed lines include all agents
where dead agents are included with zero consumption, zero health expenses and financial wealth equal to
their bequest (X t = Xτ if At = 4).

human wealth. The financial wealth evolution shows only a slight reduction in growth.

A mortality shock at the age of 70 does not decrease income since the agent is already

retired. However, it increases health expenses if there was no previous health shock. With

a previous health shock, income and health expenses remain unchanged. Additionally, the

mortality shock increases the hazard rate of death, which reduces the expected remaining

lifetime. The optimal reaction to the mortality shock is also a decrease in the fraction

of wealth that is riskily invested. The lower expected lifetime further reduces the share

riskily invested as agents prefer a less risky investment for a shorter time horizon. With a

previous health shock, the reduction is small and only due to the increased mortality risk.

Without a previous shock, the reduction is larger and due to the reduced human wealth

and the increased mortality risk. The optimal consumption increases as a result of two

opposing effects. On the one hand, the increased health expenses reduce human wealth

which leads to a decrease in consumption. On the other hand, the increased mortality risk

increases consumption as the agent wants to spend excess wealth before his death. In

this case, the mortality effect outweighs the human wealth effect. However, if a mortality
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Figure 6: Sample Shocks without Insurance. The figure depicts the effects of health and mortality
jumps in the lifetime, averaged from 100000 simulations with the calibration of Section 3 without insurance
(ιt = 0∀t). The death shock occurs at the age of 80. The light lines show the results for no previous shocks,
the grey lines are for agents with a mortality shock at the age of 70, and the agents depicted by the black
lines additionally have a health shock at the age of 50. a) depicts the optimal financial wealth evolution, b)
the optimal consumption, c) the optimal fraction riskily invested, d) the income over the lifetime, and e) the
health expenses.

shock occurs earlier in lifetime, e.g. at the age of 50, then the human wealth effect has a

larger impact and outweighs the mortality risk effect. As a result, optimal consumption

would decrease as a reaction to an early mortality shock. Independent of the age, if

the agent is already unhealthy and a mortality shock occurs, then consumption always

increases since there is no human wealth effect and only the mortality risk effect remains.

Consumption growth always decreases after a mortality shock as a result of the reduced

expected lifetime. Financial wealth growth also reduces after a mortality shock because

agents dissave and want to reduce accidental bequest, independent of a previous health

shock. At the age of 80, the agent dies.

Figure 7 depicts the corresponding graphs without health expense effect of the shocks,

i.e. βH = 0. The health shock at the age of 50 has a less pronounced effect since the human

wealth is less reduced in the absence of the health expense effect. However, consumption

and risky investment is also decreased due to the income reduction. The less pronounced

consumption reduction explains that financial wealth growth is slightly more reduced. The

mortality shock at the age of 70 now has no human wealth effect independent of a previous
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Figure 7: Sample Shocks without Health Expense Effect. The figure depicts the effects of health and
mortality jumps in the lifetime, averaged from 100000 simulations with the calibration of Section 3 without
health expense effect of the shocks (βH = 0). The death shock occurs at the age of 80. The light lines show
the results for no previous shocks, the grey lines are for agents with a mortality shock at the age of 70,
and the agents depicted by the black lines additionally have a health shock at the age of 50. a) depicts the
optimal financial wealth evolution, b) the optimal consumption, c) the optimal fraction riskily invested, d)
the income over the lifetime, and e) the health expenses.

health shock. Hence, all effects occur as an optimal reaction to the increased mortality risk

and the reduced expected remaining lifetime. The shorter expected lifetime leads to less

risky investment, an increase in consumption but a decrease in consumption growth and

a decrease in financial wealth growth. If a mortality shock would occur before retirement,

the human wealth effect is present due to the reduced income. Then, it depends on the

age whether consumption increases or decreases.

Comparing Figure 6 and 7, we see that the health expense effect of the shocks is also

important for the individual agent as the optimal controls differ significantly. Without

health expense effect of the shocks, the human wealth effect is less pronounced which

reduces the impact of the shocks for the agents.

Hence, the health expense effect of the shocks is important both for the aggregate

results and for the reaction of the individual agents to the shocks. This raises the

questions whether, and at which costs, agents are willing to hedge the health expense

jump risk using the CI insurance.
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age 25 age 45 age 75

CE(t, x, y,h, A) 24.26 44.11 2.02
CE(t, 1

2 x, y,h, A) 24.45 46.16 2.05
CE(t,2x, y,h, A) 23.59 39.71 1.87
CE(t, x, 1

2 y,h, A) 25.83 57.71 4.71
CE(t, x,2y,h, A) 17.62 24.78 0.93
CE(t, x, y, 1

2 h, A) 17.48 23.08 0.92
CE(t, x, y,2h, A) 26.38 60.76 5.21

Table 1: Gain of Having no Health Expense Jumps. The table gives the percentage gain in the
certainty equivalent (7) of having no health expense effect of the shocks (βH = 0) compared to the model with
health expense impact of shocks and without insurance. The percentage gain is given for a young (t = 5),
middle-aged (t = 25), and old (t = 55) healthy (A = 1) agent. The other state variables are set to x = 500000,
y= 100000, h = 1700. The model calibration is given in Section 3.

Welfare Impact In order to quantify the impact of the health expense effect of the

shocks, I calculate a certainty equivalent which is given by

CE(t, x, y,h, A)= [(
1−γ)

J(t, x, y,h, A)
] 1

1−γ . (7)

Table 1 gives the percentage gain of having no health expense effect of the shocks for

healthy agents (A = 1), which equals having a CI insurance for free. As expected, the

gain is always positive. Considering the state variables, the age crucially influences the

gain. The young agent strongly profits from having no health expense effect, whereas

the middle-aged agent profits even more, but the old aged agent is only a little better off

without health expense effect of the shocks. The old agent has a short remaining lifetime

which damps the effect of a health expense jump. In contrast, the young agent would suffer

from a health expense shock due to the long remaining lifetime but the probability of a

shock in younger years is low. The middle-aged agent has a non-negligible probability for

a health and mortality jump and a long enough expected remaining lifetime such that the

shock has a crucial impact. The financial wealth has only a little impact on the certainty

equivalent gain. For all ages, the gain increases for less financial wealth but the weak

effect highlights that financial wealth is not a main driving factor. Due to the permanent

effect of the health expense jump, financial wealth cannot compensate the effect, especially

in early years. Variations in income have a larger impact. The more income the agent

has, the less he profits from having no health expense effect of the shocks, independent

of the age. A high income directly compensates high health expenses since both provide

a continuous cash-flow. The older the agent is, the lower is the uncertainty with respect

to future income and the better can a high income counter high health expenses. The

actual health expenses have the most pronounced effect on the gain. The higher the
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health expenses are, the more important is the absence of the health expense effect of the

shocks for the agent. The actual health expenses are particularly crucial as they directly

determine the jump size. Besides, the health expense effect is similar to the income effect

in the opposite direction since it provides a continuous cash-flow as well.

Thus, the health expense effect of the shocks is crucial from a qualitative and a quanti-

tative point of view. Particularly, the young and middle-aged agents have a huge benefit

from having no health expense effect of the shocks.

Actual Situation The first CI insurance (also known as dread disease insurance) was

developed in South Africa in 1983.3 The insurance pays a previously fixed lump sum

if the insured person is diagnosed with a critical illness from a list of insured illnesses.

The insurance is typically offered as a long-term contract. Hence, the CI insurance in

my model differs from real contracts in the way that it offers a perfect hedge against the

excess health expenses and is only contracted for an interval of length dt.
Although the CI insurance is becoming more popular,4 it is still rarely used in Germany

compared with disability insurance or other health-related insurance products. The

relatively low demand for CI insurance is surprising due to the possible benefits. To give

an example, blindness or deafness are critical illnesses that are often covered by a CI

insurance. These illnesses might or might not trigger a disability insurance and lead to

large costs that are not fully covered by a health insurance. A handicapped-accessible

house, books for blind persons, or a special computer produce large costs. Since the

expected lifetime is usually not reduced, this messes up the financial planning. I model

such illnesses with the health shocks in the model. Cancer or a heart attack are examples

for insurable critical illnesses that reduce the expected remaining lifetime and might or

might not trigger a disability insurance as well. These illnesses also produce large costs,

e.g. for medicine and health care. The mortality shocks in my model capture such illnesses.

The seemingly huge benefits of the CI insurance raise the question why there is little

demand for this type of insurance. Therefore, I analyze the driving factors of the CI

insurance demand.

5 Insurance Demand

In this section, I add the CI insurance to the model. I calibrate the insurance premium,

present results with insurance and comment on the effects and importance of the insurance

premium level.

3 Information on real-world CI insurance contracts in this paragraph is based on: CoverTen (Incisive
Financial Publishing), October 2007, available online at: http://db.riskwaters.com/data/cover/
pdf/cover_supp_1007.pdf, last access: January 24, 2014.

4 Estimate as of 2007, more than 20 million contracts are yearly sold worldwide (source: CoverTen, p. 13-14).
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Insurance Calibration To calibrate the insurance premium, I consider 1000000 agents

and assume that every agent is always insured. The agents are denoted with a superscript

i. I calculate the average costs that occur for the insurance company corresponding to

every age. I compare these costs with the income of the insurance such that the CI contract

is fair for every age. For each time t, I consider all agents that are in the insurance market,

i.e. agents that are healthy (A i
t = 1) or face a health or mortality shock at t and were

healthy before (A i
t− = 1). The healthy ones pay the insurance premium which yields the

average insurance income (9). The agents that face a health or mortality shock at t receive

a payment from the insurance. This payment is determined by the discounted difference

of health expenses with and without jump effect until the time of death τi. This gives the

average insurance outgoings (8).

Insout(t)= 1∣∣{i |A i
t− = 1

}∣∣ ∑
i∈{

i |A i
t−=1,A i

t 6=1
}
∫ τi

t
e−r(u−t)

(
H i(u | ιit− = 0)−H i(u | ιit− = 1)

)
du, (8)

Insin(t)= 1∣∣{i |A i
t− = 1

}∣∣ ∑
i∈{

i |A i
t=1

}η(t)H i(t). (9)

In order to get smooth and reliable results, I consider the average income and outgoings

on a yearly basis. Hence, all health, mortality, and death shocks are rounded to a full year.

Now, I calibrate the insurance premium η such that the average income and outgoings are

approximately identical for all ages. Resulting, I set

η(t)= η̃

(
0.1+1.227e−

(
t̃−58.47
17.35

)2

+0.936e−
(

t̃−44.81
28.05

)2)
, (10)

where η̃ is a scaling parameter that determines the level of the insurance premium and

thus, the insurance profit. For η̃= 1, the income approximately equals the outgoings such

that the CI insurance is approximately actuarially fair given the insurance company faces

no administrative or transaction costs. Figure 8 depicts the income and outgoings for

η̃= 1.

Unfortunately, I do not have any data considering the fees and profits of CI insurance

contracts. I use the average administrative fee (2.99%) and transaction fee (5.05%) given

in Kraft, Schendel, and Steffensen (2014). These are the average values for German

life insurance companies in 2011. Furthermore, I add the average equity return in 2011

(11.9%) to account for the insurance profit.5 Resulting, I set η̃ = 1.2 in the benchmark

calibration such that the insurance company has an average profit of 20% (excluding fees).

Additionally, I present results for a more expensive insurance with an average profit of

100% (η̃= 2.0) and 200% (η̃= 3.0).

5 The average equity return is taken from the 20 biggest international insurance companies. Source:
http://www.presseportal.de/pm/39565/2367580, last access: January 25, 2014.
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Figure 8: Insurance Calibration. The figure compares the average earnings and expenditures of the
insurance company given that all agents are always insured. The grey line represents the average expen-
ditures of the insurance calculated by (8). The dark line depicts the average earnings of the insurance
calculated by (9) where η is calibrated according to (10) with η̃= 1. The model calibration is given in Section
3. The calibration is based on 1000000 simulations.

Benchmark Results Figure 9 depicts the results in the benchmark calibration and for

more expensive CI insurance contracts. I compare the figure with Figure 5, which can be

interpreted as comparing an insurance for free (η̃= 0, grey lines) and an infinitely costly

insurance (η̃=∞, dark lines). In the first case, there is no health expense effect since it is

always optimal for all agents to contract the CI insurance. In the latter case, no agent can

afford contracting the insurance. Hence, the setup is equal to the absence of the insurance.

Consequently, I expect the results for η̃ ∈ {1.2,2.0,3.0} being in between those for η̃ ∈ {0,∞}.

The financial wealth, consumption, and investment graphs in Figure 9 show that this is

the case. The higher the insurance premium is, the more risk averse the agent behaves.

Thus, he has more financial wealth, less risky investment, less consumption early in the

life cycle, and more consumption later in lifetime.

Comparing the insurance decisions for the different premiums, we intuitively see that

the higher the insurance premium is, the less agents contract the insurance. Considering

the insurance decision in detail, we notice that nearly all agents are insured until the age

of 50 independent of the insurance premium level. Then, the demand for a CI insurance

decreases rapidly which is due to less uncertainty in human wealth when approaching

retirement. In the benchmark calibration, the median agent is insured after retirement,

whereas the median agent for the more expensive insurance is not insured anymore.

For very old ages, there are only few agents in the insurance market such that the CI

insurance demand is not that accurate any more. We observe that the insurance demand

approaches similar levels for the different insurance premiums. Hence, the demand is less

dependent on the premium level for very old ages.

17



20 40 60 80 100
0

5

10

15
x 10

5 a) Financial Wealth

age
20 40 60 80 100

0

0.5

1

1.5

2
x 10

5 b) Consumption

age

20 40 60 80 100
0

0.5

1

1.5

2
x 10

4 c) Health Expenses

age
20 40 60 80 100

0

0.2

0.4

0.6

0.8

1
d) Investment & Insurance

age

Figure 9: Results for Different Insurance Premiums. The figure depicts the average optimal controls
as well as the average financial wealth and health expense evolution for different insurance premiums.
The insurance premium is determined by (10). The dark lines show results for η̃= 1.2, the grey lines for
η̃= 2.0 and the light lines for η̃= 3.0. a) presents the financial wealth evolution, b) gives the corresponding
optimal consumption, and c) depicts the health expenses. d) shows the optimal fraction of risky investment
as well as the fraction of agents that is in the insurance market (A = 1) and contracts a CI insurance
(dash-dotted lines). Solid lines represent results for living agents (A 6= 4) only and dashed lines include all
agents, whereas dead agents are included with zero consumption, zero health expenses, and a financial
wealth equal to their bequest (X t = Xτ if At = 4). The results are based on 100000 simulations with the
model calibration given in Section 3.

Policy Functions Next, I consider policy functions for the CI insurance demand in

the benchmark case with η̃ = 1.2 to analyze the impact of the state variables on the

insurance decision. Figure 10 depicts the corresponding graphs. The dark grey area

indicates that the agent optimally contracts the insurance, whereas he optimally has no

insurance protection in the light grey area. We see that the policy functions of the young

and middle-aged agent look similar, whereas the policy functions of the old agent show

a completely different pattern. Considering the young and middle-aged agents in detail,

the graphs for fixed health expenses depict that both income and financial wealth have no

crucial impact on the CI insurance decision. The graphs for fixed income highlight that

unreasonable high health expenses would be necessary such that it would be optimal not

to contract the insurance and little financial wealth further supports this. In this case,

the insurance comes at too high costs for the agent and is therefore not optimal. Since

the contract is based on the actual health expenses, the agent cannot or does not want

to afford the contract as it becomes to expensive. The graphs for fixed financial wealth
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Figure 10: Policy Functions for CI Insurance Demand. The figure depicts policy functions for the CI
insurance demand with the benchmark calibration in Section 3 and the insurance premium given in (10)
with η̃= 1.2. The first row (a,b,c) gives policy functions for a young agent (t = 5), the second row (d,e,f) for a
middle-aged agent (t = 25), and the last row (g,h,i) for an old agent (t = 55). The agents are healthy (A = 1).
The first column (a,d,g) shows the policy functions for fixed health expenses with h = 1700, the second
column (b,e,h) for fixed income with y = 100000, and the last column (c,f,i) for a fixed financial wealth of
x = 500000. The dark grey area indicates that the agent contracts the CI insurance, whereas the light grey
area indicates that the agent does not contract the insurance.

deliver the same pattern. If health expenses are extremely high and income is low, the

agent does not contract the insurance since a contract becomes to expensive. Comparing

the young and middle-aged agent, we see that the no-contract area increases as the age

increases.

For the old agent, income has an increased importance since it is certain now. The graph

with fixed health expenses highlights the importance of the income, whereas the actual

financial wealth is still of little importance. With a lot certain income, the agent does not

contract the CI insurance since he is able to pay the increased health expenses in the case

of a jump. More financial wealth supports the decision to contract the insurance since
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age 25 age 45 age 75

CE(t, x, y,h, A | η̃= 0.0) 24.26 44.11 2.02
CE(t, x, y,h, A | η̃= 1.2) 10.33 18.30 0.00
CE(t, x, y,h, A | η̃= 2.0) 6.03 7.31 0.00
CE(t, x, y,h, A | η̃= 3.0) 3.68 3.02 0.00

Table 2: Gain of Having Access to the CI Insurance. The table gives the percentage gain in the
certainty equivalent (7) of having access to the CI insurance for different insurance calibrations (η̃ ∈
{0.0,1.2,2.0,3.0}) compared to a model without CI insurance (ι= 0). The table shows the percentage gain for
a young (t = 5), a middle-aged (t = 25), and an old (t = 55) healthy (A = 1) agent. The other state variables are
set to x = 500000, y= 100000, and h = 1700. The model calibration is given in Section 3 and the insurance
calibration in (10).

it becomes affordable even with less income. Financial wealth cannot substitute income

here, which is due to mortality risk. Particularly, income delivers a certain cash-flow

until the time of death, in contrast to financial wealth. Hence, a high income can hedge a

potential health expense jump that would also have an effect until the time of death. In

contrast, the agent possibly outlives his financial wealth if he wants to counter increased

health expenses using financial wealth and faces a late time of death. Considering the

graph with a fixed income, health expenses either have to be low or extremely high such

that no CI insurance contract is optimal. In the first case, the contract is not necessary,

whereas the contract is too expensive in the second case. In between, contracting the CI

insurance is the optimal decision. Again, more financial wealth supports an insurance

contract. The graph for fixed financial wealth highlights the interaction of health expenses

and income. On the one hand, a high income and low health expenses result in a rejection

of the insurance. Since the agent is able to pay the increased expenses after a jump

without problems, he avoids the costly insurance. On the other hand, high health expenses

combined with a low income lead to no insurance as well. In this case, the agent cannot or

does not want to afford the CI insurance since it is too expensive.

Altogether, health expenses have a crucial impact on the CI insurance decision over the

lifetime. Income is also important for the insurance decision and the importance increases

in age as the uncertainty of human wealth decreases. Financial wealth is comparably

unimportant for the insurance decision since it cannot reliably hedge the effects of a health

expense jump.

Welfare Analysis To evaluate the influence of the insurance premium on the importance

of the insurance, I consider the percentage gain in the certainty equivalent when having

access to the insurance as calculated in (7). Table 2 yields the corresponding results. It

is intuitive that agents are less better off as the insurance premium increases. If the

insurance is not for free, the old agent is not significantly better off when having access
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to the insurance, independent of the premium level. This is not surprising since the

insurance demand is low for old agents due to no uncertainty in human wealth. For the

middle-aged agent, the level of the premium matters most. In the benchmark calibration,

the agent crucially benefits from having access to the CI insurance, whereas the gain

is much lower with a high insurance premium. The young agent prefers to contract

the insurance due to huge uncertainty with respect to human wealth. In contrast, the

middle-aged agent has already less uncertainty with respect to human wealth, which

decreases the need for a CI insurance. Therefore, the level of the premium becomes more

important for the middle-aged agent.

Altogether, young and middle-aged agents are significantly better off when having

access to the CI insurance. This statement holds for all premium levels, even if the

insurance profit is set to 200%. This indicates a strong desire to hedge the health expense

jump risk as long as there is uncertainty with respect to human wealth.

6 Sensitivity Analyses

In this section, I analyze how the insurance demand is influenced by important market

features and characteristics of the agent. Especially, I consider the impact of the income

parameters, the risk aversion, and underestimating the probability or magnitude of a

jump in health expenses. I am seeking for explanations considering the difference between

the high CI insurance demand in the benchmark model, and the low CI insurance demand

in the real world.

Impact of the Income Volatility Since income is the major source of wealth for the

agent, the income parameters are of special importance. In the previous section, the certain

retirement income was considered to be an explanation for the lower insurance demand

during and shortly before the retirement state. Figure 11 compares the benchmark model

with certain retirement income to a model in which retirement income is also uncertain.

Considering the CI insurance demand, the previous explanations get justified. With

uncertain retirement income, the insurance demand is higher throughout the lifetime, in

particular during the retirement period. Due to a higher uncertainty of human wealth,

the income is less suitable as a buffer against a health expense jump. This increases

the CI insurance demand. As a direct reaction to the higher insurance demand, the

average health expenses reduce. The consumption and wealth graphs reflect the increased

uncertainty with respect to the major source of wealth as well. The consumption is

reduced in early years but is higher later in the lifetime. Hence, the agent saves more as a

protection against a possibly low future income and spends the excess wealth when the
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Figure 11: Impact of an Uncertain Retirement Income. The figure depicts the average optimal controls
as well as the average financial wealth and health expense evolution. It compares the results with uncertain
retirement income, σY (t)= 0.15∀t (dark lines), to the benchmark results with certain retirement income
(grey lines). a) presents the financial wealth evolution, b) gives the corresponding optimal consumption, and
c) depicts the health expenses. d) shows the optimal fraction of risky investment as well as the fraction of
agents that is in the insurance market (A = 1) and contracts a CI insurance (dash-dotted lines). Solid lines
represent results for living agents (A 6= 4) only and dashed lines include all agents, whereas dead agents
are included with zero consumption, zero health expenses, and a financial wealth equal to their bequest
(X t = Xτ if At = 4). The results are averaged based on 100000 simulations with the model calibration of
Section 3 and insurance calibration (10) with η̃= 1.2.

mortality risk increases. As a result, the agents have more financial wealth on average

and leave more than twice as much bequest which is mainly accidental.

Having these results in mind, the effects of a change in the income volatility before

retirement on the CI insurance demand are predictable. An increase in the volatility

would further increase the insurance demand but the effect would be negligible since

already nearly all agents contract the insurance early in lifetime. A reduction of the

income volatility decreases the CI insurance demand before retirement. However, the

income volatility is already low compared to other studies6 such that a further reduction

in income volatility is difficult to justify economically. Therefore, the income volatility

cannot explain the empirically low insurance demand generally. However, it can partially

explain a low insurance demand for people that have a less volatile income.

It is intuitive in the model that a reduced income volatility also reduces the CI insurance

demand. In contrast, this effect is not obvious in the real world. In this paper, I model
6 For example, Munk and Sørensen (2010) use σY = 0.2 and Cocco, Gomes, and Maenhout (2005) have an

overall income volatility of σY ≈ 0.37.
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Figure 12: Impact of the Risk Aversion. The figure depicts the average optimal controls as well as the
average financial wealth and health expense evolution if the agent is less risk averse, γ= 3 (dark lines),
compared to the benchmark results, γ= 4 (grey lines). a) presents the financial wealth evolution, b) gives
the corresponding optimal consumption, and c) depicts the health expenses. d) shows the optimal fraction
of risky investment as well as the fraction of agents that is in the insurance market (A = 1) and contracts
a CI insurance (dash-dotted lines). Solid lines represent results for living agents (A 6= 4) only and dashed
lines include all agents, whereas dead agents are included with zero consumption, zero health expenses,
and a financial wealth equal to their bequest (X t = Xτ if At = 4). The results are averaged based on 100000
simulations with the model calibration of Section 3 and insurance calibration (10) with η̃= 1.2.

the CI insurance as an instantaneous term insurance with a contract duration of dt.
However, the real-world contracts typically have a longer duration of several years. Kraft,

Schendel, and Steffensen (2014) consider a model with a term life insurance and account

for the typically long contract duration. In their model, the demand for term life insurance

increases if the income volatility is reduced. They argue that contracting the insurance

enhances the impact of a negative income evolution since a belated change of the insurance

contract is costly. In an already bad state, the agent has either an undesired insurance

contract or faces additional costs for changing the contract. If I modeled long-term CI

insurance contracts, I would expect the same effect to take place. Then, it is unclear

whether it is the fear of having an undesired contract in a bad income state or the fear

of suffering a health expense jump while having a low income that dominates. However,

modeling long-term CI insurance contracts would decrease the overall insurance demand.

Therefore, the instantaneous term insurance modeling can serve as one explanation for

the too high insurance demand in the model compared to the real world.
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Impact of the Risk Aversion In previous sections, I argue that the absence of the

health expense jump effect or the effect of the premium level is qualitatively equivalent to

a change in risk aversion. The more expensive the CI insurance is, the more risk averse

the agent behaves. In order to verify these statements, I consider the effect of a change

in risk aversion in Figure 12. As noted in the previous sections, the direct effects of a

reduced risk aversion are less financial wealth, less bequest, and more risky investment.

The consumption is increased in early years and decreased in later years. These effects

are verified in the figure. Furthermore, the figure shows that a reduced risk aversion

leads to less insurance demand and therefore to higher health expenses. However, the

decrease in insurance demand is low before retirement and the value of risk aversion used

in the benchmark calibration is not unreasonably high. Hence, a too high risk aversion in

the model compared to reality is unlikely as an explanation for the different insurance

demand in the model and the real world.

Effects of Underestimating the Health Expense Jumps Another possible explan-

ation for the low insurance demand in the real world might be that agents underestimate

the probability that a shock occurs or underestimate the financial impact of a shock. To

analyze this hypothesis, I consider the impact of a different belief about the health shock

intensity κH and the health expense effect of the shocks βH in the model. A different

belief about the mortality shock intensity κπ would also lead to a different belief about the

expected remaining lifetime and is therefore not studied here.

Figure 13 depicts the effects that arise from an underestimation of the health shock

intensity. The agent thinks that health shocks occur less often and thus, he expects lower

average health expenses and a higher average income. Furthermore, he thinks that the

insurance has a worse cost-benefit relation. Compared to the benchmark case, there is no

significant effect regarding financial wealth, consumption and portfolio holdings. However,

the insurance demand is reduced, especially shortly before and during retirement which

yields higher health expenses.

Figure 14 depicts the effects of underestimating the health expense effect of the health

and mortality shocks. The agent underestimates average health expenses and thinks that

the insurance has a worse cost-benefit relation but he has a correct belief about average

income. The results are similar compared to the underestimation of the intensity. There is

only a little impact on financial wealth, consumption, and investment. The CI insurance

demand is reduced. In particular, there is only little demand in the retirement state.

However, the demand in early years is still very high. Health expenses increase again due

to the reduced insurance demand.
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Figure 13: Impact of Underestimation of the Health Shock Intensity. The figure depicts the average
optimal controls as well as the average financial wealth and health expense evolution in the benchmark
model (grey lines) and in a model in which the agent underestimates the true health shock intensity (black
lines). The agent thinks that health shocks occur only half as often compared to the true probability. Hence,
the agent uses κ̃H(t)= 0.5κH(t) for his optimization, whereas κH(t) is the true health jump intensity as used
in the benchmark model. a) presents the financial wealth evolution, b) gives the corresponding optimal
consumption, and c) depicts the health expenses. d) shows the optimal fraction of risky investment as well
as the fraction of agents that is in the insurance market (A = 1) and contracts a CI insurance (dash-dotted
lines). Solid lines represent results for living agents (A 6= 4) only and dashed lines include all agents,
whereas dead agents are included with zero consumption, zero health expenses, and a financial wealth
equal to their bequest (X t = Xτ if At = 4). The results are averaged based on 100000 simulations with the
model calibration of Section 3 and insurance calibration (10) with η̃= 1.2.

Agents that underestimate the intensity or impact of shocks are likely a partial explan-

ation for the different insurance demand in the model and the real world. However, the CI

insurance demand is mainly affected shortly before and during the retirement period.

Further Sensitivity Analyses Further sensitivity analyses cannot explain the differ-

ence between the model-based and the real-world CI insurance demand. I briefly give

the results, the corresponding figures are available upon request. First, I change the

preference parameters. The time preference rate δ influences the insurance demand such

that for a higher time preference rate the CI insurance demand decreases. The intuition is

that present cash-flows increase in value compared to future cash-flows. The CI insurance

premium has to be paid when contracted, whereas the monetary benefits last throughout

the lifetime if a shock occurs. Hence, the benefits decrease in value compared to the

premium. For the agent, the subjective cost-benefit relation of the insurance is worse,
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Figure 14: Impact of Underestimation of the Health Expense Jump Effect. The figure depicts the
average optimal controls as well as the average financial wealth and health expense evolution in the
benchmark model (grey lines) and in a model in which the agent underestimates the true health expense
jump effect (black lines). The agent thinks that the health expense impact of the shocks is only half as high
compared to the true impact. Hence, the agent uses β̃H(t)= 0.5βH(t) for his optimization, whereas βH(t) is
the true health expense effect of shocks as used in the benchmark model. a) presents the financial wealth
evolution, b) gives the corresponding optimal consumption, and c) depicts the health expenses. d) shows the
optimal fraction of risky investment as well as the fraction of agents that is in the insurance market (A = 1)
and contracts a CI insurance (dash-dotted lines). Solid lines represent results for living agents (A 6= 4) only
and dashed lines include all agents, whereas dead agents are included with zero consumption, zero health
expenses, and a financial wealth equal to their bequest (X t = Xτ if At = 4). The results are averaged based
on 100000 simulations with the model calibration of Section 3 and insurance calibration (10) with η̃= 1.2.

which yields a decreased insurance demand. Next, I consider the bequest motive and

find that a change in the weight of the bequest motive ε has no significant effect on the

insurance demand. In order to vary the investment opportunity set, I consider the impact

of changing the stock volatility σS. An increase in the volatility leads to an increase in

the insurance demand. The more volatile stock makes the financial wealth more volatile

as well. Thus, the financial wealth is less suitable as a protection against shocks, which

leads to the increased CI insurance demand. Next, I analyze the labor income drift µY

and the starting value Y0. Using the high school or no high school calibration given in

Munk and Sørensen (2010) instead of the college calibration, the CI insurance demand

increases. The increase can be explained by the fact that the college calibration leads to

an overall higher income and the retirement income is less reduced compared to the other

two calibrations. Hence, the less educated agents have less human wealth which can serve

as a protection against shocks. Consequently, the CI insurance demand increases. Finally,
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I consider a different labor income reduction if a shock occurs before retirement βY . An

increase in βY means that the agent keeps more income if a shock occurs. This goes along

with a decrease in the CI insurance demand before retirement since the additional income

can be used to partially counter the negative effect on the health expenses. Since there is

no income reduction after retirement, the effect vanishes then.

However, all of the above effects have either only a little impact or would require

an unreasonable parametrization to be eligible as an explanation for the different CI

insurance demand in the model and the real world.

7 Conclusion

In my model, the agents have a very high CI insurance demand, especially early in

lifetime almost all agents contract the insurance. However, the CI insurance demand

is significantly lower in the real world. On the one hand, the real-world CI insurance

demand might be too low since it is a rather new type of insurance and it is still not very

popular in most countries. On the other hand, the model-based CI insurance demand

might be too high. One explanation is, that I model instantaneous term contracts which

differ from real-world contracts. A long term contract, as insurance companies offer in

reality, is less flexible and would therefore reduce the insurance demand. Furthermore, the

insurance is modeled such that it is a perfect hedge against excess health expenses, which

is also not true in reality where a fixed payout is delivered. Another explanation is that

agents systematically underestimate the probability of health shocks or the magnitude

of the health expense impact of the shocks. Furthermore, I do not have data on the

health expense impact of the critical illnesses. Therefore, my health expense calibration

might overestimate the importance of the jump part. This could also result in a too high

insurance demand in the model. Despite these points, the high insurance demand, even if

insurance profits are set unreasonably high, indicates that a CI insurance is worth further

studies.

Further research can focus on the question why the real-world CI insurance demand is

so low, despite the benefits of the insurance in the model. Modeling long-term insurance

contracts would be an interesting extension to analyze the impact of the contract design

in detail. Another promising extension is adding a disability insurance to analyze which

type of insurance is preferred. Furthermore, a high disability insurance demand might be

one explanation for the relatively low CI insurance demand in the real world.
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A The Numerical Solution Method

I solve the optimization problem (4) presented in Section 2 numerically. The numerical

approach is similar to the one used in Schendel (2014) which is based on the procedure in

Munk and Sørensen (2010). Details considering the numerical method are given in the

papers mentioned above. For the numerical solution, I simplify the problem by reducing

the number of state variables by one.

Lemma 1. The number of state variables in the optimization problem (4) can be reduced
by one. The value function (5) can be expressed as

J(t, x, y,h, A)= y1−γF(t, x̂, ĥ, A)

with x̂ = x
y and ĥ = h

y . The corresponding HJB of the simplified problem is given by

0= sup
ĉ,θ,ι

{
ĉ1−γ

1−γ +F
[−δ−π− 1{A=1}κH − 1{A=1∨A=2}κπ+ (1−γ)µY −0.5γ(1−γ)σ2

Y
]+Ft

+Fx̂
[
x̂
(
r+λσSθ−µY +γσ2

Y
)+1− ĉ− ĥ− 1{A=1∧ ι=1}ĥη

]+0.5Fx̂x̂ x̂2 [
σ2

Sθ
2 +σ2

Y
]

+Fĥĥ
[
µH −µY +γσ2

Y
]+0.5Fĥĥĥ2 [

σ2
H +σ2

Y
]

+ 1{A=1}κHF
(
t,

(
1

1+βY

)
x̂,

(
1+ 1{ι=0}βH

1+βY

)
ĥ, A = 2

)
+ 1{A=1∨A=2}κπF

(
t,

(
1

1+ 1{A=1}βY

)
x̂,

(
1+ 1{A=1∧ ι=0}βH

1+ 1{A=1}βY

)
ĥ, A = 3

)
+πF

(
τ, x̂, ĥ, A = 4

)}
, (11)

for A ∈ {1,2,3} where ĉ = c
y . The simplified optimization problem has only four state

variables t, x̂, ĥ, A and three control variables ĉ,θ, ι, whereat hat-variables are normalized
by the income level. The optimal normalized consumption and optimal portfolio holdings
for a given insurance decision ι ∈ {0,1} can be calculated according to

ĉ = F
− 1
γ

x̂ ,

θ =− Fx̂λ

Fx̂x̂ x̂σS
.

With the optimal controls ĉ and θ for both possible insurance decisions, ι is calculated by

ι= argmax
ι∈{0,1}

F(t, x̂, ŷ, A).
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Proof. First, I reduce the number of state variables. Due to the linearity of the financial

wealth (3), income (2), and health expense (1) dynamics and the power utility setup, I can

calculate for k > 0,k ∈R

J(t,kx,ky,kh, A)= sup
{cs,θs,ιs}s∈[t,τ)

Et,x,y,h,A

[∫ τ

t
e−δ(s−t) (kcs)1−γ

1−γ ds+εe−δ(τ−t) (kXτ)1−γ

1−γ
]

= k1−γ sup
{cs,θs,ιs}s∈[t,τ)

Et,x,y,h,A

[∫ τ

t
e−δ(s−t) c1−γ

s

1−γds+εe−δ(τ−t) X1−γ
τ

1−γ

]
= k1−γJ(t, x, y,h, A).

Thus, I can reduce the number of state variables by one via expressing the indirect utility

as

J(t, x, y,h, A)= y1−γJ
(
t,

x
y

,
y
y

,
h
y

, A
)

=: y1−γF(t, x̂, ĥ, A)

with the new introduced normalized state variables x̂ = x
y and ĥ = h

y . I express the partial

derivatives of the HJB (6) in terms of F, which yields

Jt = y1−γFt,

Jx = y1−γ 1
y

Fx̂,

Jxx = y1−γ 1
y2 Fx̂x̂,

Jh = y1−γ 1
y

Fĥ,

Jhh = y1−γ 1
y2 Fĥĥ,

Jy = (1−γ)y−γF − y−γ
x
y

Fx̂ − y−γ
h
y

Fĥ,

Jyy =−γ(1−γ)y−γ−1F +2γ
x
y

y−γ−1Fx̂ +2γ
h
y

y−γ−1Fĥ +
x2

y2 y−γ−1Fx̂x̂ + h2

y2 y−γ−1Fĥĥ.

Inserting the new value function and the above derivatives in the HJB (6) and defining the

new normalized control variable ĉ = c
y leads to the new simplified HJB (11). For solving

the simplified optimization problem, I first consider the HJB (11) for a fixed ι ∈ {0,1}. Then,

I can calculate the optimal normalized consumption and the optimal portfolio holdings,

conditional on ι by taking the first order conditions of the HJB (11). Next, I substitute the

calculated optimal controls into the HJB. The optimal insurance decision ι is then defined

as the argument that maximizes the value function.
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I solve the new simplified optimization problem numerically with an implicit finite

difference backward iterative approach. I set up a grid of normalized wealth x̂ ∈ (0,150]

with 1000 grid points, of normalized health expenses ĥ ∈ (0,3] with 500 grid points, and of

time t ∈ [0,110] with 661 grid points. I start with the solution for the case A = 4, which is

trivial as there is no decision. Afterwards, I calculate the solution for A = 3, followed by

A = 2, and lastly A = 1. In the state A = 1, I first calculate optimal normalized consumption

and portfolio holdings for both possible insurance decisions. Then, I take the insurance

decision that maximizes the value function calculated with the other optimal controls in

each grid point. With the optimal insurance decision, I choose the corresponding optimal

normalized consumption and portfolio holdings. After having calculated the optimal

controls, I simulate 100 000 life cycles.
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