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Non-Technical Summary 

 
We analyze a family's term life insurance demand in a life cycle portfolio choice model. A major 
source of risk for a family is the early death of the sole wage earner. To hedge this, the family in our 
model can contract a term life insurance. Most existing papers studying the life insurance demand 
consider short term contracts that can be bought or sold continuously which ensures an optimal 
insurance holding at each point in time. This simplification might crucially affect the results. 
Therefore, we focus on a model where the family can choose between different long-term 
contracts that differ with respect to their insurance sum. The annual insurance premium includes 
fees for administrative costs and transaction costs. A belated change of the insurance is costly for 
the family and only possible as long as the insured person is younger than a specific age and 
healthy. The wage earner faces stochastic mortality risk with a jump component that we interpret 
as critical illness. Once the agent suffers from a critical illness, the family cannot change the 
insurance contract any more, the income of the family reduces, and the mortality risk increases. If 
the wage earner dies before the maturity of the insurance contract, the remaining family members 
receive a single, fixed payment of the insurance company. We use a German life table to calibrate 
the mortality process, German cancer data to calibrate the critical illness shock and data of the 
German life insurance industry to calibrate the insurance fees. The insurance premiums are 
calculated such that the contracts are actuarially fair.  
 
The realistically modeled insurance induces new qualitative effects that are important for the 
optimal decisions over the life cycle. The long-term insurance contract amplifies the effect of 
negative labor income shocks, since in the undesired case of a negative labor income shock a 
premature termination of the contract or a reduction of the insurance sum leads to additional 
losses. In an already bad state, the family has problems to make the premium payments. Families 
with a lower income volatility have a significantly higher insurance demand. The amplifying effect 
also reduces the insurance demand of families that are more risk averse. In general, the families 
increase insurance protection over the life cycle. The long term contract design effect fades away 
as agents get older, since the contract duration and human wealth uncertainty reduce. Most 
importantly, young families do not buy any long-term term life insurance. If an older agent 
suddenly dies, the accumulated financial wealth and contracted insurance ensures that the 
surviving family member can maintain their consumption level, although consumption growth is 
reduced. By contrast, an unexpected death in younger years leads to severe problems for the 
family.  
 
Our results are robust to adding short-term insurance, annuities, or health insurance. For instance, 
if families have also access to short-term insurance, they buy these contracts at a young age 
without demanding long-term insurance. This decision leaves the possibility open that a health 
shock prevents them from renewing short-term contracts. In this case, the family might suffer 
financial hardship when the wage earner eventually dies. To avoid lifetime poverty of the 
remaining family members, a social security could mitigate those problems by making transfer 
payments. 
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Life Insurance Demand under Health Shock Risk

Abstract: This paper studies the life cycle consumption-investment-insurance

problem of a family. The wage earner faces the risk of a health shock that

significantly increases his probability of dying. The family can buy long-term

life insurance that can only be revised at significant costs, which makes insurance

decisions sticky. Furthermore, a revision is only possible as long as the insured

person is healthy. A second important feature of our model is that the labor

income of the wage earner is unspanned. We document that the combination

of unspanned labor income and the stickiness of insurance decisions reduces

the long-term insurance demand significantly. This is because an income shock

induces the need to reduce the insurance coverage, since premia become less

affordable. Since such a reduction is costly and families anticipate these potential

costs, they buy less protection at all ages. In particular, young families stay

away from long-term life insurance markets altogether. Our results are robust

to adding short-term life insurance, annuities and health insurance.

Keywords: Health shocks, Portfolio choice, Term life insurance, Mortality risk,

Labor income risk

JEL-Classification: D14, D91, G11, G22



1 Introduction

For most households, labor income is the essential source to finance lifetime consumption.

Therefore, a potential income loss following an early death of the wage earner is a crucial

risk. Consequently, a life insurance is of special importance to hedge future consumption of

the remaining family members. Following Richard (1975) most studies simplify the insurance

decision by including an instantaneous term insurance contract. However, in practice buying life

insurance usually involves a long-term commitment and later changes are costly. Furthermore,

health checks prevent agents from contracting an insurance if they already have a critical illness.

As benchmark scenario, we thus study a life cycle problem where a family has access to long-

term life insurance that can only be bought or sold at realistic lump-sum costs.1 In a second

step, we demonstrate that our results also hold if we add annuities or short-term life insurance

contracts.

Our model involves several relevant features: The family receives unspanned labor income

earned by the head of the household and faces short-sale constraints that bind its stock demand,

especially at young ages. Furthermore, the wage earner faces the risk of suffering from a health

shock that we interpret as critical illness. After such a health shock the family has no access

to the insurance market any more, i.e. cannot buy new insurance or change/extend existing

contracts. Additionally, the wage earner’s probability of dying increases significantly. We

calibrate the health shock and mortality process to cancer and mortality data.

The combination of these features (long-term insurance contracts, transaction costs, unspanned

labor income, short-sale constraints, health shocks) distinguishes our model from the related

literature discussed in Section 2. This combination generates interesting qualitative effects

that are important for the optimal decisions of the family over the life cycle: The long-term

nature of the insurance contract amplifies the effect of negative labor income shocks, since in

the undesired case of a negative labor income shock a premature termination of the contract

or a reduction of the insurance sum leads to additional losses. In an already bad state, the

family might be worse off due to the stickiness of the insurance contract. Therefore, families

1Formally, we model the insurance decision as an impulse control problem.
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with higher income uncertainty have significantly lower insurance demands.

Most importantly, we find that younger families (head of household less than 30 years old)

optimally stay away from long-term life insurance markets. Therefore, an unexpected death

in younger years can lead to severe problems for the family. Our findings significantly differ

from the results in frameworks that model life insurance decisions via an instantaneous contract

instead of a long-term contract as in the benchmark case of our paper. In these frameworks,

the theoretically optimal participation rates are typically higher. We address this point by also

considering a situation where families have access to short-term life insurance contracts as well

(see Section 6). In this case, families buy short-term contracts at young ages. However, the

demand for long-term contracts is essentially unaffected, which shows the robustness of our

benchmark results. Consequently, young families leave the risk uninsured that the head of the

household suffers from a health shock so that the short-term contract cannot be extended.

Furthermore, we find that it is optimal for families to increase long-term insurance protection

over the life cycle. This is because the long-term contract design becomes less relevant as

agents get older, since the contract duration and the uncertainty about human wealth goes

down. Therefore, if an older wage earner suddenly dies, the accumulated financial wealth and

existing insurance contracts ensure that surviving family members can maintain their standard

of living, although consumption growth must be reduced. To summarize, our results suggest

that a high level of income, a high labor income volatility, large fees imposed by insurance

companies and the presence of health shocks reduce the long-term insurance demand of a family.

Notice that the optimal total insurance demand (long-term and short-term) is hump-shaped if

we add short-term contracts, which is qualitatively in line with empirical evidence.

Recently, a large literature has discussed the driving factors for surrender behavior, including

Fang and Kung (2012), Fier and Liebenberg (2013), and Gottlieb and Smetters (2014). These

authors document the dominating role of income shocks in encouraging people to surrender

their life insurance policies. Gottlieb and Smetters (2012) argue that empirically households do

not pay careful attention to the stickiness of long-term insurance products and to the unspanned

nature of income, also due to health shock risk. Consequently, households may end up with
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suboptimally high insurance protection. Liquidity needs may force them to surrender. Our

results show that in a neoclassical model households have a low surrender rate since they

rationally anticipate their future liquidity demands. This might explain why Gottlieb and

Smetters (2012) provide a behavioral explanation using narrow framing.

The remainder of the paper is organized as follows. Section 2 provides an overview of the related

literature. Section 3 introduces the model setup. Section 4 presents the calibration. Section 5

discusses our benchmark results. Section 6 study insurance market involving annuities, short-

term insurance or health insurance. Section 7 provides robustness checks. Section 8 concludes.

An appendix contains additional robustness checks.

2 Related Literature

The modern portfolio optimization literature starts with Merton (1969) and Merton (1971). In

discrete time, Cocco, Gomes, and Maenhout (2005) numerically solve a realistically calibrated

life cycle model with deterministic mortality risk. One of their main objects is to study the

effect of unspanned labor income that is calibrated to US data. Munk and Sørensen (2010) solve

a realistically calibrated life cycle model in continuous time with unspanned labor income, but

without mortality risk. Their main focus is on analyzing the effect of unspanned labor income

and a stochastic riskfree rate on consumption-investment decisions. They adapt the labor

income calibration results from Cocco, Gomes, and Maenhout (2005) to a continuous-time

framework and find that unspanned labor income significantly effects consumption-investment

decisions.

Merton (1975) points out the importance of the risk of dying as a source of risk. Campbell

(1980) studies the corresponding optimization problem. He considers a two-period model and

introduces an insurance market to allow a family to hedge the risk that the wage earner dies.

Analytically, he derives the optimal demand for insurance. Yaari (1965) analyzes the consump-

tion decision of an agent when faced with longevity risk. Richard (1975) analytically solves a life

cycle problem with deterministic labor income and a continuous instantaneous term insurance
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decision. He allows an uncertain time of death with deterministic distribution. Simple forms

of an actuarially fair one-period life insurance contract are still widely used in the portfolio

optimization literature. Pliska and Ye (2007) mathematically extend the model and analyze

the effect of parameter choice on the life insurance demand. Closely related to our work is the

paper Huang, Milevsky, and Wang (2008), who also consider the consumption-investment and

life-insurance decision of a family with CRRA utility. They focus on the correlation between

labor income and asset returns. Their main results are that life-insurance demand is insensi-

tive to changing risk aversion and highly depends on labor income volatility. As the previous

literature, they also model life insurance via a short-term contract and do not consider health

shocks or stochastic mortality risk.

Recent papers building on the work of Richard (1975) use a continuous-time finite-state Markov

chain approach to solve life cycle portfolio problems with insurance decisions analytically. Kraft

and Steffensen (2008) focus on the consumption and insurance decision of a single person that

faces the risk of dying and disability. Bruhn and Steffensen (2011) consider the consumption-

investment and insurance decision of a two- and multi-person household. This strand of liter-

ature is able to provides analytical solutions of optimal insurance decisions, but relies on the

assumptions that markets are complete and thus is not able to capture crucial realistic features

such as unspanned labor income risk.

There are also recent papers studying life cycle problems of families that face mortality risk

and can insure themselves via life insurance contracts. Love (2010) focuses on the effect of

demographic shocks. In his model, the agent can exogenously get married, get divorced or have

children. We adapt his calibration approach to capture the impact of the family size on the

utility from consumption. His model involves a simple one-period term life insurance. Hubener,

Maurer, and Rogalla (2014) analyze the optimal life insurance demand of retired couples. They

model husband and wife via two separate mortality processes, but do not allow for changes in

the family status (e.g. divorce). Since they consider only the retirement phase, they especially

focus on annuities and disregard labor income. Hong and Ŕıos-Rull (2012) infer how individuals

value consumption in different demographic stages using life insurance holdings by age, sex,
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and marital status. In particular, they estimate a consumption equivalence scale parameter.

There are also papers on life cycle problems with stochastic mortality risk. In a discrete-time

setting, Cocco and Gomes (2012) include stochastic mortality risk in a realistically calibrated

life cycle model which they solve numerically. They capture mortality risk by a Lee-Carter type

model. The agent can invest in a riskless bond and in a longevity bond that is correlated with

shocks in mortality rates. Furthermore, they allow the agent to choose the retirement date

endogenously. Huang, Milevsky, and Salisbury (2012) analyze optimal consumption decisions

analytically and compare results from a Yaari type model with a model allowing for stochastic

mortality risk. In contrast to our paper, stochastic mortality risk is modeled as a geometric

Brownian motion. Koijen, Van Nieuwerburgh, and Yogo (2013) consider a life cycle problem

where the probability of dying can have unsystematic jumps. They develop risk measures for

life and health insurance products that pool the effects of several insurance products. In a

discrete-time setting, they calculate the corresponding optimal results for their risk measures.

They also compare the model implied risk measures with empirically derived values where their

focus on agents that are older than 50 years. Their model also involves critical illness jumps. In

contrast to our paper, they focus on the insurance implications, but do not consider unspanned

labor income or stock market risk. Finally, Hugonnier, Pelgrin, and St-Amour (2013) study

the interplay of financial and health-related choices. They also provide conditions under which

both decisions can be made separately.

3 Model Setup

In this section, we present the model setup and describe the optimization problem of the family.

Financial Assets The family (syn. agent) can invest into two financial assets, but faces

short-sale constraints. The assets are a risky stock (index) S and a riskfree bond B. The
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riskfree rate is denoted by r. The dynamics are given by

dSt = St
[
(r + σSλ) dt+ σS dW

S
t

]
,

dBt = Btr dt

with a constant market price of risk λ and a stock market volatility of σS. The process W S =(
W S
t

)
is a standard Brownian motion.

Biometric Risk The sole wage earner faces the risk of a health shock (e.g. cancer) and of a

death shock. The state variable H defined by

Ht =


1 alive and healthy at t,

2 alive but unhealthy at t,

3 dead at t,

captures the current status of the wage earner. The random age of death is denoted by τD

and is modeled as doubly stochastic stopping time with intensity π(t,H), the so-called hazard

rate of death, where π(t, 3) = 0. Formally, τD is the time of the first jump of the jump process

ND =
(
ND
t

)
. As long as Ht = 1, the health shock jump process NH =

(
NH
t

)
has a deterministic

intensity κ(t). The health shock is permanent so that agents cannot recover again. Unhealthy

agents cannot face another health shock.2 The time of a health shock is denoted by τH . If the

agent does not experience a health shock during his lifetime, then τH is infinity.

Unspanned Labor Income The family receives an uncertain income stream denoted by Y .

Its dynamics are influenced by the health status and age of the wage earner and are given by

dYt = 1{Ht=1,2}Yt

(
µY (t) dt+ σY (t)

(
ρ(t) dW S

t +
√

1− ρ(t)2 dW Y
t

))
+ 1{Ht−=1}Yt−(p1,2(t)− 1)dNH

t

+ 1{Ht−=1}Yt−(p1,3(t)− 1)dND
t + 1{Ht−=2}Yt−(p2,3(t)− 1)dND

t , (3.1)

where W Y =
(
W Y
t

)
is a standard Brownian motion, independent of W S. This income stream is

unspanned for two reasons: First, the Brownian motion W Y cannot be hedged in the financial

market. Second, the health shock NH cannot be fully insured.

2Our results hardly change if we allow for more than one health shock.
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Furthermore, pi,j is the fraction of income that remains after a jump from state i to state j. We

assume that the agent retires at the prespecified date TR. The income process has a drift of µY ,

a volatility of σY and is correlated with the stock via ρ. Before retirement, the family’s income

is interpreted as labor income, whereas it is a pension after the retirement date. After the death

of the wage earner, the income stream can be interpreted as widow’s pension indexed by the

salary upon death. If a critical illness shock occurs, the decreased income can be interpreted

in the sense that the wage earner is forced to reduce work effort.3 Alternatively, it can be

interpreted as a transfer income that the family receives from the government.

Long-term Life Insurance The family can buy a long-term life insurance to hedge the

potential income loss resulting from the mortality risk of the wage earner. While the insurance

contract is active, the insurance company pays the family a fixed payment I if the wage earner

dies. The insurance offers a fixed set of contracts with specific payouts. The set of offered

contracts is denoted by

I = {0, 50 000, 100 000, 150 000, 200 000, 300 000, 500 000, 750 000, 1 000 000, 2 000 000}. (3.2)

The family must pay a constant insurance premium ι(I) as long as the contract is active.

When the agent changes the insurance sum of the contract, a lump-sum payment η is due.

This payment takes the previous insurance sum, the new insurance sum and the age of the

agent that determines the mortality pattern into account. The lump-sum payment ensures an

actuarially fair new contract, but it also involves a fee. The contract can be changed as long as

the wage earner is healthy and younger than TC . The insurance contract expires at min(τD, TI),

i.e. at the death of the insured person or at the maturity of the contract, TI . In the first case,

the insurance pays the insurance sum I, in the second case the insurance pays nothing. We

assume that TC < TI , i.e. after TI there is no insurance available any more.

Technically, the insurance decision can be characterized by an impulse control problem. The

family chooses the intervention times ζi, i ∈ N, and the intervention actions ωi, i ∈ N. The

intervention can take place at time ζi if the wage earner is alive (ζi < τD), healthy (Hζi = 1),

3In Section 6 we also analyze the effect of additional medical expenses that are triggered by a health shock.
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and in the insurance market (ζi ≤ TC). A feasible intervention action requires that ωi is chosen

such that the new insurance sum is in the set of offered contracts, Iζi ∈ I. We denote the set

of possible interventions at ζi by

Iζi = {0− Iζi− , 50 000− Iζi− , . . . , 2 000 000− Iζi−}.

Formally, the above statement can be expressed by the condition ωi ∈ Iζi . At an intervention

time, the family must pay the lump-sum payment ηI(ζi, ωi, Iζi) that is a correction payment

which makes the insurance contract actuarially fair, but additionally involves a fee. A detailed

description is postponed to Section 4, see equation (4.4). Following the intervention, the family

pays the new annual premium ι(Iζi) to maintain insurance protection until min(τD, TI).

Reducing the insurance sum can be thought of as partial surrendering. Reducing the insurance

sum to zero corresponds to full surrendering. Controlling the insurance sum is only allowed

when the wage earner is healthy since the insurance contract is priced as a long-term contract

on that basis. One could in principle work with access to surrendering as unhealthy, but such

a demand would be negligible since the agent then holds a relatively cheap insurance contract.

So by product pricing, all reclassification risk is borne by the insurance company and therefore

limits the agents controllability over the contract sum. In Section 6 we study the effects on

our conclusion from access to short-term life insurance while healthy. For that product the

reclassification risk is borne by the policy holder. See also Gottlieb and Smetters (2014) for the

understanding of reclassification risk in connection with surrender options.

Preferences The family has a fixed time horizon T and a power utility function given by

u(x,H) =

(
x
φH

)1−γ

1− γ

with relative risk aversion γ. Here φH is a consumption scaling term that depends on the

family size and for instance captures that two persons do not need twice as much consumption

as a single person for the same utility level.4 The family maximizes expected utility from

4Preferences with a consumption scaling parameter are used by Love (2010) and Hubener, Maurer, and

Rogalla (2014).
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intermediate consumption and terminal wealth given by

Et,x,y,I,H

∫ T

t

e−δ(u−t)

(
cu
φHu

)1−γ

1− γ
du+ ε e−δ(T−t)

XT
1−γ

1− γ


with time preference rate δ and financial wealth X. The constant ε specifies the importance of

the bequest motive.5

Financial Wealth Dynamics The family chooses consumption c and the fraction θ invested

in the risky asset. As long as the wage earner is healthy and young, the family also optimizes

over the insurance sum via the impulse control strategy (ζi, ωi), i ∈ N. The wealth dynamics

follow

dXt = Xt

[
(r + θtλσS) dt+ θtσS dW

S
t

]
+
[
Yt − ct − 1{At=1,2∧ t<TI}ι(It)

]
dt

+ 1{At−=1,2∧ t<TI}It− dN
D
t ,

Xζi = Xζ−i
− η(ζi, ωi, Iζi).

Optimization Problem As stated above, the family optimizes expected utility from in-

termediate consumption and terminal wealth. The optimization problem is characterized by

several state variables: financial wealth x, labor income y, the health status of the wage earner

H and the current insurance choice I. The control variables are the consumption rate c, the

proportion of wealth θ invested in risky assets, and the impulse control strategy for the insur-

ance decision (ζi, ωi), i ∈ N. At time t = 0 the wage earner is assumed to be 20 years old. The

optimization problem is then given by

max
{cs,θs}s∈[0,T ),{(ζi,ωi)}i∈N

E0,x,y,I,H

∫ T

0

e−δu

(
cu
φHu

)1−γ

1− γ
du+ ε e−δT

XT
1−γ

1− γ


s.t. dXt = Xt

[
(r + θtλσS) dt+ θtσS dW

S
t

]
+
[
Yt − ct − 1{At=1,2∧ t<TI}ι(It)

]
dt

+ 1{Ht−=1,2∧ t<TI}It− dN
D
t ,

Xζi = Xζ−i
− η(ζi, ωi, Iζi),

5We analyze the effects of luxury bequests in Section 7.
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where we impose short-sale constraints, i.e. θt ∈ [0, 1], and consider admissible strategies, which

in particular requires Xt ≥ 0.6 The value function (indirect utility function) is defined by

J(t, x, y, I,H) = sup
{cs,θs}s∈[t,T ),{(ζi,ωi)}i∈N

Et,x,y,I,H

∫ T

t

e−δ(u−t)

(
cu
φHu

)1−γ

1− γ
du+ ε e−δ(T−t)

XT
1−γ

1− γ

 .
We split the problem into its impulse control and stochastic control part. Given no intervention

at t, but optimal impulse control afterwards, the value function is denoted by

J∗(t, x, y, I,H) = sup
{cs,θs}s∈[t,T ),{(ζi | ζi 6=t,ωi)}i∈N

Et,x,y,I,H

∫ T

t

e−δ(u−t)

(
cu
φHu

)1−γ

1− γ
du+ ε e−δ(T−t)

XT
1−γ

1− γ

 .
In this case, the optimization problem reduces to a stochastic control problem. The correspond-

ing Hamilton-Jacobi-Bellman equation (HJB) is given by

δJ∗ = sup
c,θ

{( c
φH

)1−γ

1− γ
+ J∗t

+ J∗x
[
x (r + θλσS) + y − c− 1{A=1,2∧ t<TI}ι(I)

]
+

1

2
J∗xxx

2θ2σ2
S + 1{A=1,2}

[
J∗yyµY (t) +

1

2
J∗yyy

2σY (t)2 + J∗xyxyσSσY (t)ρ(t)θ

]
+ 1{H=1}κ(t)

[
J∗(t, x, p1,2(t)y, I, 2)− J∗(t, x, y, I, 1)

]
+ 1{A=1}π(t,H)

[
J∗(t, x+ 1{t≤TI}I, p

1,3(t)y, 0, 3)− J∗ (t, x, y, I, 1)
]

+ 1{A=2}π(t,H)
[
J∗
(
t, x+ 1{t≤TI}I, p

2,3(t)y, 0, 3
)
− J∗ (t, x, y, I, 2)

]}

with terminal condition J∗(T, x, y, I,H) = εx
1−γ

1−γ . Here subscripts on J denote partial deriva-

tives. Finally, we calculate the value function J by maximizing J∗ over all possible interventions

at ζi = t:

J(t, x, y, I,H) = sup
ωi∈Iζi

{
J∗
(
t, x− η(ζi, ωi, Iζi), y, I + ωi, H

)}
.

6Since income is not bounded away from zero and the family has a bequest motive, the latter condition is

automatically satisfied.
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Note that in the case of ωi = 0 we have a continuation strategy, i.e. the family decides to keep

its insurance decision. If this is optimal, then J(t, x, y, I,H) = J∗(t, x, y, I,H). Consequently,

there is no lump-sum payment, since we are in the no transaction region and η(ζi, 0, Iζi) = 0.

4 Calibration

This section describes the model calibration that is also summarized in Table 1.

[INSERT TABLE 1 ABOUT HERE]

Financial Assets We use standard values for the stock market drift (µS = 0.06), the stock

market volatility (σS = 0.2) and the riskfree rate (r = 0.02) that are similar to the values used

by Cocco, Gomes, and Maenhout (2005) or Munk and Sørensen (2010), among others.

Biometric Risk Considering mortality risk, we use a Gompertz mortality model with con-

stant parameters x, m, b for the healthy agent and increase the hazard rate of death by a

constant term k1 and an age-dependent term k2 if the agent becomes unhealthy

π(t,H) =


1
b

e(x+t−mb ) for Ht = 1

1
b

e(x+t−mb ) +k1 + k2t for Ht = 2

0 for Ht = 3

.

We calibrate the health shock using German cancer data.7 We weight the gender specific data

equally and do not distinguish between genders in the simulation. This yields an overall lifetime

risk of getting cancer of 46.75%, a median age at diagnosis of 69 years and an absolute 5-year

survival rate of 53.5%. Furthermore, the data provides age and genderspecific cancer incidence

rates for 5-year intervals up to an age of 85. We calibrate the health shock rate κ using a gender

7We use German data taken from “Cancer in Germany 2007/2008, German Centre for Cancer Registry Data

& Robert Koch Institute, 8th Edition 2012”.
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averaged version of the age specific cancer incidence rates. We assume the following functional

form for the health shock rate

κ(t) = a e−(min(t,65)−b
c )

2

with constant parameters a, b, c. Since we do not have data for ages higher than 85, for

simplicity we assume that cancer rates are constant for agents older than 85 years. We obtain

the parametrization a = 0.02489, b = 66.96 and c = 29.42. Figure 1 illustrates the data points

and our calibration of κ.

[INSERT FIGURE 1 ABOUT HERE]

For the calibration of the magnitude of the impact of the cancer shock on the mortality in-

tensity (k1, k2) we use the absolute average 5-year survival probability. Since there is an age

dependency, we split the effect in a constant part k1 and an age dependent part k2. We cali-

brate k1 and k2 such that the simulated average 5-year survival probability and simulated death

distribution match the empirical ones from the data. Here, we use German mortality data.8

For the shock impact, the calibration yields k1 = 0.048 and k2 = 0.0008. Considering the

Gompertz mortality risk parameters, we set the age at t = 0 to x = 20, the x-axis displacement

to m = 89.45 and the growth rate (steepness parameter) to b = 6.5. Figure 2 compares our

simulated yearly death rates with the empirical death rates in Germany.

[INSERT FIGURE 2 ABOUT HERE]

Our simulation fits the above-mentioned empirical means well: The average time of death is

80.5, the median age at diagnosis is 69, and over the lifetime 45.8% of the population face a

health shock. The absolute 5-year survival rate is 54.3%. Figure 3 shows the histogram of

health shocks and death shocks and the corresponding health-state distribution of the wage

earner in our simulation.

[INSERT FIGURE 3 ABOUT HERE]

8The German mortality data is taken from “Sterbetafel 2009/11, Statistisches Bundesamt, 2013”.
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Labor Income For the income dynamics (see equation (3.1)), we use the labor income cal-

ibration from Munk and Sørensen (2010), which is a continuous-time version of the Cocco,

Gomes, and Maenhout (2005) results. They estimate the labor income process using PSID

data dependening on the agent’s education. Its drift term is modeled as

µY (t) =


ξ0 + b+ 2ct+ 3dt2 for t < TR

−(1− P ) for TR ≤ t ≤ TR + 1

0 for t > TR + 1

.

In the benchmark calibration, we assume that the wage earner has a high school education and

set the corresponding parameters according to Munk and Sørensen (2010). We use a retirement

age of 65 (TR = 45), an age- and education-independent real wage increase of ξ0 = 0.02 and an

initial income of Y0 = 19107. The drift polynomial is given by b = 0.1682, c = −0.00323, d =

0.000020 and the retirement income reduction parameter is P = 0.68212. We also assume a

different volatility parameter before and after retirement

σY (t) =

σ
w
Y for t < TR

σrY for t ≥ TR

,

where we use σwY = 0.2 and σrY = 0 in the benchmark calibration. In the same manner, we fix

the correlation parameter

ρ(t) =

ρ
w for t < TR

ρr for t ≥ TR

.

Following Munk and Sørensen (2010), we assume zero correlation (ρw = 0, ρr = 0). If a jump

occurs (critical illness or death), the income is reduced. In the critical illness case, we assume

that the wage earner loses part of his income because he has to reduce his work effort.9 We

suppose that income decreases by 20%, i.e. p1,2(t < TR) = 0.8. If the critical illness occurs

during retirement, the pension is however unaffected, i.e. p1,2(t ≥ TR) = 1. In both cases,

9In practice, an agent could buy disability insurance, but this usually does not cover all loses. At least

potential future wage increases cannot be insured.
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the income volatility remains unchanged. In the benchmark calibration, we do not include a

social security system which is studied as a robustness check (see Section 7). Hence, we set

p1,3 = p2,3 = 0 such that the family has no income if the wage earner dies. Figure 4 depicts the

income profile of the wage earner and of the family over the life cycle.

[INSERT FIGURE 4 ABOUT HERE]

Long-term Life Insurance We assume a competitive insurance market, which leads to an

actuarially fair insurance. First, we consider the continuation case where no intervention takes

place. Then, the family only has to pay the insurance premium. The annual insurance premium

ι(I) is assumed to be constant over time and is defined by the actuarial fairness criterion at

t = 0. Therefore, the expected discounted value of the insurance premia, Σagent, is equal to the

the expected discounted value of the payments of the insurance company to the family, Σins,

i.e.

Σagent(0, I) = Σins(0, I)

with

Σagent(0, I) = E0

[∫ TI

0

e−rs
ι(I)

1 + ψad + ψtr
1{s<τD} ds

]
=

ι(I)

1 + ψad + ψtr

1

r

(
1− E0

[
e−rmin{τD,TI}

])
,

and

Σins(0, I) = E0

[∫ TI

0

e−rs I d1{s≥τD}

]
=

∫ TI

0

e−rs IfD(s) ds,

where fD is the probability density function of τD. The constant ψad captures annual admin-

istrative costs and the constant ψtr captures deferred acquisition costs that are paid with the

annual premium. Hence, the annual insurance premium can be expressed as

ι(I) =
Ir(1 + ψad + ψtr)

∫ TI
0
fD(s) e−rs ds

1− E0

[
e−rmin(τD,TI)

] . (4.3)
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Next, we consider the intervention case, i.e. a situation where the family increases or decreases

the insurance sum I. If an intervention (ζi, ωi) takes place, the family must pay a lump-sum

payment η(ζi, ωi, Iζi). This payment is necessary since the insurance premium ι is calculated

based on survival patterns at t = 0. Therefore, an insurance contract starting at ζi > 0

requires an adjusted premium. If the family reduces protection, ωi < 0, no lump-sum payment

is made.10 This relates to the comments on surrender values in Section 3. Reduction of the

insurance corresponds to partial surrender and we assume that there is no (partial) surrender

value.11 Also, no access to the life settlement market is modelled. If the family increases

insurance protection, ωi > 0, we assume that the insurance company takes previously paid

premia into account so that the lump-sum payment is

η(ζi, ωi, Iζi) = (1 + ψad + ψtr)
(

Σins(ζi, Iζi)− Σagent(ζi, Iζi)

− Σins(ζi, Iζi − ωi) + Σagent(ζi, Iζi − ωi)
)
, (4.4)

where the two last terms depend on the previous insurance sum and capture the retrospective

reserve. Note that they vanish in the special case where the family has no previous insurance

protection. The variables Σins(ζi, Iζi) and Σagent(ζi, Iζi) denote the conditional present values

of the payments to the family and to the insurance company:

Σins(ζi, Iζi) =

∫ TI

ζi

e−r(s−ζi) IζifD(s | min(τD, τH) > ζi) ds,

Σagent(ζi, Iζi) =
ι(Iζi)

1 + ψad + ψtr

1

r

(
1− Eζi

[
e−r(min(τD,TI)−ζi) | min(τD, τH) > ζi

])
,

where we condition on the family being in the insurance market, i.e. being healthy and alive.

The continuous premium ι is calculated according to (4.3). Notice that a valid intervention

also requires ζi ≤ TC .

To summarize, there are two cases: If no intervention takes place, the family must pay the

insurance premium ι(I). If an intervention (ζi, ωi) takes place, an additional lump-sum payment

10Note that in countries like Germany a term life insurance has usually no repurchase value.
11Our results are robust to this assumption. In robustness checks not reported here, we have assumed that

the surrender value is 90% of the present value of the contract. Our main results however hardly change.
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becomes due

η(ζi, ωi, Iζi) =


0 if ωi ≤ 0,

(1 + ψad + ψtr)
(

Σins(ζi, Iζi)− Σagent(ζi, Iζi)

−Σins(ζi, Iζi − ωi) + Σagent(ζi, Iζi − ωi)
)

else.

We allow the family to choose among insurance contracts with payouts specified by I (see

equation (3.2)). The family is able to change its insurance exposures until the wage earner is

70 (TC = 50). The insurance contract expires at the age of 75 (TI = 55). These ages are typical

for German term life insurance contracts.

We set the administrative fee (ψad = 2.99%) and the transaction fee (ψtr = 5.05%) to the

average values of the German life insurance market.12 We discretize the conditional expec-

tations Et

[
e−rmin(τD,TI) | min(τD, τH) > t

]
and

∫ TI
t

e−rs fD(s | min(τD, τH) > t) ds, for t ∈

{0, 1, . . . , TC} using German mortality data.13 For intermediate values of t we use linear inter-

polation.

Preferences We choose standard values from the life cycle portfolio optimization literature

for the risk aversion (γ = 4), the time preference rate (δ = 0.03) and the bequest motive

(ε = 1). In the benchmark calibration, the problem starts at time t = 0, when the wage earner

is 20 years old, and ends at t = T = 80, when the wage earner is either 100 years old or dead.

Following Love (2010), we calculate the consumption equivalence scaling parameter via

φ = (αAdult + 0.7αChild)
0.7,

where αAdult is the number of adults and αChild is the number of children in the household. In

the benchmark calibration, we study a family consisting of two adults and one child. Hence,

we set the corresponding consumption scaling parameter to φ1,2 = 2.0043 if the wage earner is

alive and to φ3 = 1.4498 if the wage earner is dead. We assume that the family starts with a

financial wealth level that is twice the initial annual labor income of the wage earner, X0 = 2Y0.

12Data about the transaction fees and administrative fees on the German insurance market are taken from

“map-report no. 807-808”.
13Mortality data is taken from Life table for Germany (“Sterbetafel 2009/11, Statistisches Bundesamt, 2013”).
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5 Benchmark Results

This section provides our main results for the model introduced in Section 3 with the calibration

presented in Section 4.

5.1 Average Key Variables over the Life Cycle

[INSERT FIGURE 5 ABOUT HERE]

Figure 5 depicts the average optimal decisions as well as the average financial wealth and

income over the life cycle. Similar as in the above mentioned papers, financial wealth is hump-

shaped and the portfolio holdings are decreasing over the life cycle. The dark consumption line

represents the consumption of the whole family. We see that consumption increases over the

life cycle, although the slope decreases significantly after retirement. This is mainly due to two

reasons. First, the labor income profile changes at retirement, especially the certainty of the

retirement income leads to a flatter consumption path. Second, due to a higher mortality risk

at older ages there are more families where the wage earner has already died. Then, the family

has no more income and one person less to take care of, which both reduces consumption.

The grey line represents the single person equivalent consumption.14 This line increases almost

linearly over the life cycle, which indicates that on average the death of the wage earner does

not lead to a reduced utility from consumption for the remaining family members. This may be

either due to a high amount of accumulated financial wealth, or a term life insurance contract.

As the insurance sum distribution graph shows, it is a combination of both for most families.

About 65% of the families buy a long-term life insurance over the life cycle. At a young age, the

families stay away from the insurance market, but start buying insurance at the age of about

30. Furthermore, the families increase the insurance sums over the life cycle and there is no age

at which they systematically reduce the insurance exposures. Apparently, agents do not change

the insurance contracts after the retirement age of 65, although changes would be possible until

14This is a comparable one-person consumption level that is calculated by weighting the consumption of the

family with the consumption equivalence scaling parameter ct
φHt

.
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the age of 70. This can be explained by the certainty of the retirement income. Consequently,

there is no uncertainty with respect to human wealth. Hence, there is no reason to change the

insurance decision. The increasing insurance sum over the life cycle might be counterintuitive

at first. Since an older agent has on average more financial wealth and more income to hedge

the effect of a health shock, one could expect the insurance demand to be lower compared to a

situation with less income and wealth. However, there are opposing effects. First, for an older

agent the contract duration is shorter. Hence, reducing an insurance exposure is relatively more

costly than keeping it. Second, uncertainty with respect to human wealth and financial wealth

significantly reduces for an older agent. Therefore, it is less likely that he faces a wealth and

income state in which the contract is not affordable or too expensive relatively to his financial

situation. These two effects dominate and yield an overall increasing insurance demand over

the life cycle.

5.2 Comparative Statics

[INSERT FIGURE 6 ABOUT HERE]

To analyze the effects of age, income, financial wealth, and the previous insurance contract,

we consider the policy functions. Figure 6 depicts the insurance demand for different levels of

labor income. The lines represent different ages for a fixed level of financial wealth and a fixed

previous insurance contract with insurance sum 100 000. For all ages, the insurance demand

increases in the income level, which has two reasons: First, if income is large, then a higher

insurance sum becomes affordable. Second, since an insurance is a hedge against the income loss

upon death of the wager earner, a higher income increases this hedging motive. Furthermore,

the figure highlights a time-dependence. The black line shows the policy function for a young

wage earner at the age of 25. For a labor income of below 100 000, it is always optimal for the

family to ignore any previous insurance contract and to surrender the contract. This leads to

a loss of insurance protection and all previous paid premiums are lost as well. We document

a large continuation interval ranging from about 175 000 to 450 000, i.e. the family optimally

sticks to the current insurance contract and no intervention takes place. The advantage is that
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the insurance protection maintains, past premiums are not lost and no expensive lump-sum

costs must be paid for increasing the insurance sum. For a 50 year old middle-aged agent it is

in general optimal to stick to the previous insurance decision, except for very high or low labor

income. So the insurance choice at this age is also very robust. For an old retired agent at

the age of 68 the optimal insurance sum crucially depends on the pension level. Furthermore,

the insurance sum increases due to the certainty of the pension. This means that income

volatility as a crucial source of uncertainty is no longer present. Overall, we document a strong

dependence of the optimal insurance demand on labor income and time.

[INSERT FIGURE 7 ABOUT HERE]

Figure 7 depicts the corresponding policy functions dependent on financial wealth. Initially, we

see that financial wealth has less impact on the insurance decision as income. However, this is

not surprising, since the insurance is mainly used to hedge the loss of labor income in the case

of death. Overall, the more financial wealth the agent has, the less insurance is optimal. This

is intuitive, since there is less need for a fixed payout upon death if wealth is higher. For a

middle-aged agent the continuation region includes all reasonable financial wealth levels. The

young agent cancels the insurance if he has a huge amount of financial wealth (that is above

the average wealth level at this age), whereas the old agent raises the insurance contract if his

wealth is less than 1 600 000. To summarize, the insurance decision is rather insensitive towards

the level of financial wealth.

[INSERT FIGURE 8 ABOUT HERE]

Figure 8 shows how the policy functions depend on the previous insurance decision. It reveals

the stickiness of this decision. The diagonal line depicts a situation where the agent keeps

his insurance decision, i.e. the previous insurance contract equals the current optimal decision.

Below the diagonal, the agent reduces insurance protection, whereas he increases protection

above the diagonal. A young agent would cancel any contract, independent of its insurance

sum, and thus stays away from the insurance market in the first place. In this case, the
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inflexibility of the contract is very severe, since the agent is tied to the contract for a potentially

long time period or loses a significant amount of money if he cancels or reduces the contract

prematurely. The uncertainty of human wealth at a young age amplifies this problem, as

contracts are usually downward adjusted when human wealth has deteriorated and the current

contract is not affordable any more. A middle-aged agent keeps a contract if the insurance

sum is below 500 000. Contracts with higher insurance sums are reduced to this level. The old

agent has a continuation region ranging from 200 000 to 750 000, where he sticks to his contract.

To summarize, the decisions at every age are pretty stable: Young agents stay away from the

insurance market, whereas middle-aged agents usually keep their current positions.

5.3 Impact of Critical Illness and Death Shocks

[INSERT FIGURE 9 ABOUT HERE]

Figure 9 depicts the effects of a critical illness shock at the age of 50 (black lines) and a death

shock at the age of 60 (grey lines) on the optimal behavior and the financial wealth and income

evolution. If the wage earner dies, financial wealth jumps upwards since the family receives an

insurance payment. Furthermore, it leads to a negative jump in family consumption due to

the reduced number of family members, although there is only a minor change in the level of

single person equivalent consumption. However, the family reduces the slope of its consumption

path to adjust to the new income situation. Besides, the portfolio holdings are reduced to the

classical Merton demands, since there is no labor income any more.

If the agent is first exposed to a critical illness shock, he becomes aware of a high probability

of an early death. Consumption is reduced since labor income decreases and the family tries to

accumulate financial wealth for the remaining family members. Portfolio holdings are reduced

as well. Unfortunately, the agent cannot increase his insurance protection any more. Therefore,

at the time of death the average insurance sum is less than 50% of the sum of an agent without

previous health shock. Finally, the single person equivalent consumption is adjusted when the

health shock occurs, and thus there is no significant decrease at the time of death.
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[INSERT FIGURE 10 ABOUT HERE]

Figure 10 illustrates a situation where the wage earner dies at the age of 30. In the first

setting there is no previous health shock (grey lines), whereas in the second setting there is

a health shock at the age of 25 (dark lines). In this case, the family has only little time to

accumulate financial wealth. Furthermore, most families do not buy any insurance at this

age, which explains the very low average insurance sum. These two facts together with the

early death of the wage earner reduces consumption of the family and also the single person

equivalent consumption significantly. Buying a term life insurance contract could easily double

the available financial wealth.

6 Extending the Insurance Market

In this section, we add additional insurance products to the model and discuss their effects on

the long-term life insurance demand. More precisely, we give the agent the opportunity to buy

annuities, short-term life insurances and a health insurance.

6.1 Short-term Life Insurance

Fist, we add a short-term life insurance as in Richard (1975) that provides coverage for a short

time interval. If the wage earner is alive and healthy (Ht = 1) and in the insurance market

(t ≤ TC), the family can buy short-term life insurance products. It chooses the notional of the

short-term contract Ishort > 0 and gets coverage for the next short time period of length dt.

The family pays a premium at the rate

ιshortt (Ishort) = Ishortπ(t, 1)(1 + ψad + ψtr).

The premium is calculated such that the contract is actuarially fair and additionally involves

fees. After that period, the agent can buy a new short-term life insurance that covers the next

short time interval.
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[INSERT FIGURE 11 ABOUT HERE]

Figure 11 depicts the average demand for short-term or long-term life insurance contracts

over the life cycle. Apart from the additional demand for short-term insurance, the results are

similar to the benchmark case. Financial wealth, consumption and portfolio holdings are largely

unaffected by giving the family access to short-term insurance. Besides, our findings indicate

that there is no significant change in the demand for long-term insurance although the family

buys short-term contracts over the life cycle. While the short-term contract is much cheaper

and more flexible than the long-term contract for young families, it cannot be contracted in

the state of critical illness (Ht = 2). Therefore, the short-term contract cannot provide any

benefits after a health shock. Hence, the only possibility for the family to be insured in the

state of critical illness is to contract long-term life insurance before a health shock occurs.

[INSERT FIGURE 12 ABOUT HERE]

Figure 12 depicts the average total demand for short-term and long-term life insurance contracts

over the life cycle. Apparently, the total demand is hump-shaped with a peak at the age of 45.

This pattern is qualitatively in line with the empirical findings of Hong and Ŕıos-Rull (2012).

These authors document lower participation rates for younger and older age groups than for

middle aged agents. Quantitatively, however, our model suggests optimal insurance demands

that are higher than the ones found in the data.

6.2 Annuity Contract

Now, we extend the model such that, additionally to the term life insurance, the family can

buy annuities as long as the wage earner is alive. If the family contracts an annuity at some

point ζi, the insurance company pays out an annuity A until the wage earner dies. The annuity

is constant as long as the family does not change its annuity decision. The insurance company

offers a set of annuity contracts with the following annual payments

A = {0, 6 000, 12 000, 18 000, 24 000, 30 000}.
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If the family changes its annuity decision, it pays a lump sum premium ηA(ζi, ωi, Aζi) to the

insurance company. This payment takes the previous annuity decision, the new annuity decision

and the age of the agent into account. It ensures an actuarially fair new contract, but it also

involves a fee. The annuity choice adds an additional layer of complexity to the impulse control

problem of the family. At an intervention time ζi, the intervention action ωi = (ωI , ωA) is split

into an insurance action ωI and an annuity action ωA. We require the intervention action to be

chosen such that the new insurance sum and the new annuity is in the set of feasible contracts.

To characterize the family’s annuity decision recall that the annuity A is constant as long as

the family does not intervene. In the intervention case where the family increases the annuity,

ωA > 0, we assume that the insurance company takes previously paid lump sum payments into

account. Therefore, the fair up-front payment for an intervention (ζi, ω
A
i ) is given by

ηA(ζi, ω
A
i , Aζi) = (1 + ψad + ψtr)

[
ΣA
ins(ζi, Aζi)− ΣA

ins(ζi, Aζi − ωAi )
]
.

Here the variables ΣA
ins(ζi, Aζi) denote the conditional present values of the annuities that are

paid by the insurance company to the family:

ΣA
ins(ζi, Aζi) = Eζi

[∫ τD

ζi

Aζie
−r(s−ζi)ds

]
,

where we condition on the agent being alive at ζi. In our implementation, the conditional

expectations are calculated as described in Section 4.

[INSERT FIGURE 13 ABOUT HERE]

Figure 13 depicts the average demand for annuities and long-term life insurance contracts

over the life cycle. The insurance demand is slightly higher than in the benchmark case.

Since families can buy annuities, there is a tendency that they turn some of their cash into

additional income. This leads to a higher demand for life insurance contracts. Financial wealth,

consumption and stock holdings are largely unaffected by adding annuities. Notice that the

demand for annuities is in general relatively low. Agents buy annuities only in the last third

of their lifetimes. Until an age of 55, the family does not contract an annuity (based on 100
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000 simulations). One reason for this finding is that the family already has a decent income.

Since the income stream continues after retirement, the retirement income is similar to an

annuity. Therefore, the annuity demand reflects how the family should supplement its income.

This intuition conforms with the result that only families with a large financial wealth, but

relatively poor income buy annuities.

6.3 Health Expenses and Health Insurance

Finally, we analyze the impact of exogenous out-of-pocket health expenses on the optimal in-

surance decision.15 Following Koijen, Van Nieuwerburgh, and Yogo (2013), we assume that the

family has basic health insurance that covers the bulk of health expenditures. More precisely,

we assume that the wage earner has employee health insurance in the active phase and Medi-

care in retirement. However the family faces additional out-of-pocket health expenses that are

not covered by basic health insurance. As health shocks significantly increase the out-of-pocket

health expenses, the family can contract a supplementary private health insurance as long as

the wage earner is alive and healthy (Ht = 1). The health insurance decision can be made

continuously and is denoted by

χhealtht =

1 if the agent is insured at t,

0 else.

If insured, χhealtht = 1, the family pays an insurance premium ιhealtht . In this case, the health

insurance covers the additional expenses of the family when the wage earner suffers a health

shock. The net income process Y net (net of health expenses and health insurance premia) is

given by

Y net
t = Yt

[
1− ε(t,Ht, χ

health
t )

]
− 1{χhealtht =1}ι

health
t ,

15Some authors such as Yogo (2009) and Hugonnier, Pelgrin, and St-Amour (2013) allow for an endogenous

choice of health expenses. In their settings, the agent can improve his health status by spending money on

health investments. We abstract from endogenous health investments and assume exogenous health expenses

as in Koijen, Van Nieuwerburgh, and Yogo (2013) or Ameriks, Caplin, Laufer, and Van Nieuwerburgh (2011).
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where ε(t,Ht, χ
health
t ) denotes the fraction of income that the family spends for health expendi-

tures, net of health insurance premium and benefit payments.16 If a health shock occurs while

the wage earner is insured, the insurance covers all additional out-of-pocked expenses, i.e.

Ytε(t, 2, 0)− Ytε(t, 1, 0).

This is the benefit paid by the health insurance company for the remaining life time of the

wage earner after the health shock.

We calibrate the out-of-pocket health expenses such that they match the average US health

expenses. The data comes from the Agency of Healthcare Research and Quality.17 It gives

information about the average medical expenses for five age groups since 1996 and the respective

out-of-pocket expenses. Furthermore, it provides expenses resulting from selected medical

conditions, especially cancer. We estimate an average real increase in historical health expenses

of about 2.9% per annum. For uninsured people, we parametrize (R2 > 0.99) out-of-pocket

health expenses by

E(t,H) =

1.81(t+ x)2 − 71.21(t+ x) + 1236 for H = 1,

6.365(t+ x)2 − 149.9(t+ x) + 8460 for H = 2,

where x = 20 is the age of the wage earner at t = 0. In order to convert the average health

expenses into income fractions, we set ε(t,Ht, 0) = E(t,Ht)

Yt
where Yt denotes the expected income

at time t.

For the calibration of the health insurance, we simulate 100 000 paths given that the family is

insured. We simulate the expected discounted payments ΣH
ins(t) of the insurance company to

the family at time t:

ΣH
ins(t) =

1

|{ω | Hω
t− = 1}|

∑
ω∈{ω|Hω

t−
=1,Hω

t 6=1}

∫ τω

t

e−r(s−t)Y ω
s (ε(s, 2, 0)− ε(s, 1, 0)) ds,

16De Nardi, French, and Jones (2010) show that out-of-pocket expenses are sharply increasing in both age

and income.
17See http://meps.ahrq.gov/mepsweb/data stats/quick tables.jsp.
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where ω denotes a particular path. The corresponding insurance income ΣH
agent(t) is given by

ΣH
agent(t) =

1

|{ω | Hω
t− = 1}|

∑
ω∈{ω|Hω

t =1}

ιhealtht .

Now, we calibrate the insurance premium such that for all ages the average income and expenses

are identical. Finally, we add an administrative fee and a transaction fee to the actuarially fair

premium. It turns out that the results of our calibration can be very well represented by the

following exponential form

ιhealtht = (1 + ψad + ψtr)
[
2306 e−( t−60.08

16.48 )
2

+ 1677 e−( t−48.13
21.06 )

2]
.

[INSERT FIGURE 14 ABOUT HERE]

Figure 14 depicts our results with exogenous health expenses. It turns out that the family has

a strong demand for the private health insurance. Almost all young families contract the health

insurance until an age of 45. When age increases, the premia increases rapidly and the family

leaves the insurance market in 80% of the cases. Again optimal consumption and portfolio

holdings are largely unaffected. Our results show that with exogenous health expenses, the

demand for life insurance contracts decreases slightly. This decrease can be explained by the

characteristics of the net income process. Including out-of-pocket health expenses lowers (net)

human wealth. This reduces the hedging demand for mortality risk and in turn the demand

for life insurance contracts.

7 Robustness Checks

This section presents robustness checks for our benchmark model. These checks involve different

labor income volatilities, a calibration without health shock and a different bequest motive. We

also discuss the main drivers that prevent families from increasing their long-term insurance

demands. Furthermore, we give results for a calibration with a social security system that pays

a widow’s pension after the death of the wage earner. Additional robustness checks can be

found in the appendix.
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7.1 Labor Income Volatility

[INSERT FIGURE 15 ABOUT HERE]

A term insurance allows a family to (partially) hedge the risk resulting from an early death

of the wage owner. Since the death of the wage earner predominately leads to a loss of labor

income, the optimal insurance choice crucially depends on the labor income process. A negative

feature of a long-term insurance contract is the stickiness of its premia. Consequently, such an

insurance contract amplifies the effect of negative labor income shock. For instance, if a family

is optimally insured and a negative labor income shock occurs, then the family has too much

insurance protection given the actual income situation and must cut down on consumption.

Alternatively, the family can reduce or terminate the insurance contract yielding to a loss,

since term life insurance has no surrender value. In both cases, the effect of a negative labor

income shock is stronger if the family has a higher insurance exposure. Therefore, hedging

mortality risk comes at the cost of amplifying the effect of a negative labor income shock. In

line with these findings, Figure 15 shows that the insurance demand is significantly higher for

families with lower income volatility. Besides, these families also buy insurance earlier so that

young families are insured as well.

7.2 Health Shocks

[INSERT FIGURE 16 ABOUT HERE]

A health shock prevents the family from increasing the insurance protection or buying a new

contract. Intuitively, one might expect that the family anticipates this restriction and buys

more protection at a young age. Figure 16 compares the benchmark model with an alternative

calibration without health shocks. Surprisingly, our findings document a higher insurance

demand in the case without health shocks. The reason is that a health shock can be interpreted

as a warning that death becomes more likely. If the wage earner faces a health shock, the family

knows that he will die with a high probability in the next few years. Although an early death

is clearly negative for the family, the health shock partially resolves uncertainty about the
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timing of dying, which itself is beneficial. With this new information the family is better able

to plan consumption and investment decisions. Therefore, the family reduces consumption in

order to accumulate more wealth, which can be seen in Figure 9 and 10. Due to the additional

savings, the insurance demand goes down. Notice that in our benchmark calibration labor

income is reduced after a health shock, which triggers a decrease in consumption. This is

however also true in a calibration where the labor income is not reduced in the critical illness

state. Furthermore, one might argue that the increased insurance demand without health shock

results from the fact that in this setup there is no state in which the insurance acquisition is

forbidden. However, the results also hold when we only consider families that do not face a

health shock.

7.3 Bequest Motive

[INSERT FIGURE 17 ABOUT HERE]

There is empirical evidence that bequest can be interpreted as a luxury good. In this case,

households are less risk averse concerning bequest than intermediate consumption. Following

De Nardi, French, and Jones (2010) and Lockwood (2012), we now study a version of our model

with a more general bequest motive given by

u(XT ) = ε
1

1− γ
(k +XT )1−γ.

Notice that k and γ jointly determine the curvature of the bequest function. For k = 0 we

obtain standard CRRA utility from bequest, which implies that households are equally risk

averse concerning bequest and consumption. For k > 0, the marginal utility of consumption

declines faster than the marginal utility of bequest implying a higher risk aversion for bequest.

We recalibrate the preference parameters according to De Nardi, French, and Jones (2010).

We choose k = 273 000 and a bequest weight of ε = 2.36. Figure 17 shows that the choice of

the bequest motive has a small impact on the insurance decision and the portfolio holdings.

However, there is a significant reduction in consumption leading to a consumption hump around

the retirement date.
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7.4 Social Security System

[INSERT FIGURE 18 ABOUT HERE]

In this paragraph, we add a social security system to the model that pays the family an

income after the death of the wage earner. This can be interpreted as a widow’s pension

and the corresponding income stream is calibrated using data of the German social security

system. Therefore, we recalibrate the effects of the wage earner’s death on the income process

as follows:18

p1,3(t) = p2,3(t) =



0.55 · 0.68212(1− 0.108) for t < 40,

0.55 · 0.68212(1− (43− t)0.036) for 40 ≤ t < 43,

0.55 · 0.68212 for 43 ≤ t < 45,

0.55 for t ≥ 45.

(7.5)

Notice that a widow receives at most about 55% of the pension. Besides, before retirement

(t < 45) there is also an adjustment for the replacement rate of 0.68212 and deductions. The

income jump p1,2 if the wage earner gets unhealthy remains unchanged.

Figure 18 depicts the average key variables over the life cycle. Compared to an economy without

social security system (see Figure 5), the average income is higher and does not approach zero.

Furthermore, the optimal consumption now shows a hump-shaped pattern. The financial wealth

and the portfolio holdings are only little affected. The insurance sum distribution highlights

that about 90% of the population buy term life insurance over the lifetime, which is a significant

increase. However, one of our main results stands: Young families do not participate in term life

insurance markets. Figure 19 compares the average insurance demand to the benchmark results

without social security system. One might conjecture that a social security system crowds out

most of the insurance demand and, consequently, the insurance demand is significantly reduced.

Our results however point in a different direction: With a social security system, the insurance

demand significantly increases for all ages. This increase can be explained by the changes in the

18Details can be found in the German Social Security Code (SGB).
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characteristics of the income process. First, the human wealth is higher due to the additional

payment. Second, uncertainty of human wealth reduces since the income loss at death is less

pronounced and the widow’s pension is deterministic.

[INSERT FIGURE 19 ABOUT HERE]

8 Conclusion

This paper studies the optimal insurance demand of a family that is exposed to health shock

and mortality risk. The wage earner receives an unspanned income stream and can buy term

life insurance up to the age of 70 as long as he is healthy. We model the available long-

term insurance contracts in a realistic way by assuming that decisions can only be revised at

certain costs. The combination of unspanned income as well as the stickiness of the insurance

contracts reduces the long-term insurance demand significantly. In particular, it is optimal for

young families to stay away from this insurance market. These results are robust to adding

short-term insurance, annuities and health insurance. For instance, if families have also access

to short-term insurance, they buy these contracts at a young age without demanding long-term

insurance. This decision leaves the possibility open that a health shock prevents them from

renewing short-term contracts. In this case, the family might suffer financial hardship when

the wage earner eventually dies.
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Hong, Jay H., and José-Vı́ctor Rı́os-Rull, 2012, Life Insurance and Household Consumption,

American Economic Review 102, 3701–30.

31



Huang, Huaxiong, Moshe A. Milevsky, and Thomas S. Salisbury, 2012, Optimal retirement

consumption with a stochastic force of mortality, Insurance: Mathematics and Economics

51, 282–291.

Huang, Huaxiong, Moshe A. Milevsky, and Jin Wang, 2008, Portfolio Choice and Life Insurance:

The CRRA Case, Journal of Risk and Insurance 75, 847–872.

Hubener, Andreas, Raimond Maurer, and Ralph Rogalla, 2014, Optimal Portfolio Choice with

Annuities and Life Insurance for Retired Couples, Review of Finance 18, 147–188.

Hugonnier, Julien, Florian Pelgrin, and Pascal St-Amour, 2013, Health and (other) Asset Hold-

ings, Review of Economic Studies 80(2), 663–710.

Koijen, Ralph S.J., Stijn Van Nieuwerburgh, and Motohiro Yogo, 2013, Health and Mortality

Delta: Assessing the Welfare Cost of Household Insurance Choice, Working Paper, NBER.

Kraft, H., and M. Steffensen, 2008, Optimal Consumption and Insurance: A Continuous-Time

Markov Chain Approach, ASTIN Bulletin 28, 231–257.

Lockwood, Lee M., 2012, Bequest motives and the annuity puzzle, Review of Economic Dy-

namics 15, 226–243.

Love, David A., 2010, The Effects of Marital Status and Children on Savings and Portfolio

Choice, Review of Financial Studies 23, 385–432.

Merton, Robert C., 1969, Lifetime Portfolio Selection under Uncertainty: The Continuous-Time

Case, Review of Economics and Statistics 51, 247–257.

Merton, Robert C., 1971, Optimum Consumption and Portfolio Rules in a Continuous-Time

Model, Journal of Economic Theory 3, 373–413.

Merton, Robert C., 1975, Theory of Finance from the Perspective of Continuous Time, The

Journal of Financial and Quantitative Analysis 10, 659–674.

32



Munk, Claus, and Carsten Sørensen, 2010, Dynamic asset allocation with stochastic income

and interest rates, Journal of Financial Economics 96, 433–462.

Pliska, Stanley R., and Jinchun Ye, 2007, Optimal life insurance purchase and consump-

tion/investment under uncertain lifetime, Journal of Banking & Finance 31, 1307–1319.

Richard, Scott F., 1975, Optimal consumption, portfolio and life insurance rules for an uncertain

lived individual in a continuous time model, Journal of Financial Economics 2, 187–203.

Yaari, Menahem E., 1965, Uncertain Lifetime, Life Insurance, and the Theory of the Consumer,

Review of Economic Studies 32, 137–150.

Yogo, Motohiro, 2009, Portfolio Choice in Retirement: Health Risk and the Demand for An-

nuities, Housing, and Risky Assets, Working Paper, NBER.

A Additional Robustness Checks

A.1 Insurance Structure

[INSERT FIGURE 20 ABOUT HERE]

The structure of a term life insurance contract varies among insurance companies. Especially

the fees ψtr, ψad, the date TC until the insurance decision can be revised and the expiration

date TI can be different. Figure 20 depicts the effect of a change of the fees. We compare

the average fees of the benchmark result (grey line) to a regime with high fees (light line) and

without fees (dark line). Clearly, the insurance demand decreases if fees are raised. However,

although the fees are increased significantly, the decrease in insurance demand is not dramatic.

This indicates that the insurance profit, captured by the fees, has a rather small effect on the

insurance demand.
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A.2 Family Size

[INSERT FIGURE 21 ABOUT HERE]

Figure 21 confirms the intuition that a larger family buys more insurance protection. In our

model, this is captured by the consumption scaling parameter φH . The relative difference in the

consumption scaling parameter in state H = 1, 2 and H = 3 is smaller, the larger the family.

Consequently, for a large family more consumption is needed to obtain the same single-person

equivalent utility level. If the wage earner dies, the whole income is lost, but the bigger part of

consumption remains if the family size is large. This increases the insurance demand.

A.3 Risk Aversion

[INSERT FIGURE 22 ABOUT HERE]

Figure 22 shows the impact of the relative risk aversion on the average insurance sum. Ap-

parently, risk aversion has little impact before the age of 30 and after retirement. In between,

more risk averse agents demand less insurance. Hence, a more risk averse agent perceives the

insurance contract as more risky compared to financial investments (stocks, bonds). However,

overall the degree of relative risk aversion has only little impact on the insurance decision.
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Financial Market

µS Stock drift 0.06

σS Stock volatility 0.2

r Bond drift 0.02

Preferences

δ Time preference rate 0.03

γ Relative risk aversion 4

ε Weight of the bequest motive 1

αAdult Number of adults in the household 2

αChild Number of children in the household 1

T Time horizon of the family 80

X0 Initial financial wealth 38 214

Mortality Risk

x Age of the wage earner at t = 0 20

m X-axis displacement 89.45

b Steepness parameter 6.5

k1 Constant impact of a health shock 0.048

k2 Age-dependent impact of a health shock 0.0008

Health Shock Risk

a Scaling parameter 0.02489

b X-axis displacement 66.96

c Steepness parameter 29.42

Income

ξ0 Age and education independent wage increase 0.02

b Education dependent wage increase 0.1682

c Education and age dependent wage increase parameter −0.00323

d Education and age dependent wage increase parameter 0.00002

P Replacement ratio 0.68212

TR Retirement time 45

Y0 Initial income 19 107

σwY Volatility while working 0.2

σrY Volatility during retirement 0

ρw Correlation with the stock while working 0

ρr Correlation with the stock during retirement 0

p1,2(t < TR) Income level after a health shock while working 0.8

p1,2(t ≥ TR) Income level after a health shock during retirement 1

p1,3 Income level at death without previous health shock 0

p2,3 Income level at death with previous health shock 0

Insurance

ψad Administrative fee 0.0299

ψtr Transaction fee 0.0505

TC Latest time for changing the insurance contract 50

TI Contract maturity 55

Table 1: Benchmark Calibration Parameters.
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Figure 1: Health Shock Calibration. The figure shows empirical gender averaged 5-year cancer detection rates and our

fitted curve κ. The empirical realizations (points) are gender averaged values from “Cancer in Germany 2007/2008, German Centre

for Cancer Registry Data & Robert Koch Institute, 8th Edition 2012”. The parameters for our fitted curve κ (solid line) are given

in Section 4.
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Figure 2: Death Shock Calibration. The figure depicts the number of yearly deaths for a normalized population of size 1.

The mortality data (grey line) is gender averaged from a life table for Germany (“Sterbetafel 2009/11, Statistisches Bundesamt,

2013”). Our simulated values (dark line) are the averages from 100 000 death shock simulations using the biometric risk calibration

of Section 4.
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Figure 3: Simulated Biometric Risk Distribution. The graphs show the results of 100 000 simulated life cycles with

the biometric risk parametrization of Section 4. a) depicts the histogram of the health shocks in our simulation. b) shows the

corresponding histogram of death shocks. c) shows the state distribution of the families. The dark area corresponds to families

with a healthy wage earner (A = 1), the middle grey area represents unhealthy agents (A = 2) and the light area marks families

with a dead wage earner (A = 3).
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Figure 4: Expected Income Profile over the Life Cycle. The figure depicts the expected income of a wage earner

conditional on survival (dark line) assuming that he has a high school education. The grey line gives the expected income of the

family and incorporates the biometric risk of the wage earner. The labor income and biometric risk parameter values are stated in

Section 4 and the lines depict the average values of 100 000 simulations.
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Figure 5: Average Key Variables over the Life Cycle. The graphs depict the average optimal control variables as well as

the average financial wealth and income evolution over the life cycle based on 100 000 simulations with the benchmark calibration

of Section 4. a) shows the average financial wealth evolution over the life cycle. b) depicts the average optimal consumption over

the life cycle. The dark line corresponds to the consumption of the family, whereas the grey line represents the equivalent level of

consumption for a one person household and is scaled with the consumption scaling parameter c/φ. c) shows the optimal average

portfolio holdings over the life cycle. d) depicts the average income of the family. e) shows the average insurance sum. f) depicts

the distribution of the insurance sum over the life cycle. The darkest area marks families with no insurance contract, the white

area families with the highest insurance sum (2 000 000) and the grey areas families with intermediate insurance sums.
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Figure 6: Insurance Demand Dependent on Income. This graph depicts the optimal insurance decision dependent on

the income of a healthy agent (A = 1). The financial wealth is fixed to x = 800 000, the previous insurance choice is fixed to

I = 100 000 and the age of the agent is fixed to 25 (dark line), 50 (grey line) and 68 (light line). The policy functions are based on

the calibration presented in Section 4.
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Figure 7: Insurance Demand Dependent on Financial Wealth. This graph depicts the optimal insurance decision

dependent on the financial wealth of a healthy agent (A = 1). The income is fixed to y = 50 000, the previous insurance choice is

fixed to I = 100 000 and the age of the agent is fixed to 25 (dark line), 50 (grey line) and 68 (light line). The policy functions are

based on the calibration presented in Section 4.
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Figure 8: Insurance Demand Dependent on the Previous Insurance Sum. This graph depicts the optimal insurance

decision dependent on the previous insurance sum of a healthy agent (A = 1). The financial wealth is fixed to x = 800 000, the

income is fixed to y = 50 000 and the age of the agent is fixed to 25 (dark line), 50 (grey line) and 68 (light line). The policy

functions are based on the calibration presented in Section 4.
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Figure 9: Optimal Reaction to Critical Illness and Death. The figure depicts the average financial wealth evolution and

average optimal controls based on 100 000 simulations where all wage earners are assumed to die at the age of 60. The black lines

correspond to the optimal behavior of a family where the wage earner gets a critical illness at the age of 50, whereas the grey lines

represent a family whose wage earner dies without previous critical illness. The calibration equals the one of the benchmark results

and is explained in Section 4. a) shows the average financial wealth evolution over the life cycle. b) depicts the average optimal

consumption over the life cycle. The solid lines are for the consumption of the family c and the dashed lines for the equivalent

single person consumption level c/φ. c) presents the average optimal portfolio holdings, d) gives the average income of the family

and e) depicts the average optimal insurance sum over the life cycle.
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Figure 10: Optimal Reaction to Early Critical Illness and Death. The figure depicts the average financial wealth

evolution and average optimal controls based on 100 000 simulations where all wage earners are assumed to die at the age of 30.

The black lines correspond to the optimal behavior of a family where the wage earner gets a critical illness at the age of 25, whereas

the grey lines represent a family whose wage earner dies without previous critical illness. The calibration equals the one of the

benchmark results and is explained in Section 4. a) shows the average financial wealth evolution over the life cycle. b) depicts the

average optimal consumption over the life cycle. The solid lines are for the consumption of the family c and the dashed lines for

the equivalent single person consumption level c/φ. c) presents the average optimal portfolio holdings, d) gives the average income

of the family and e) depicts the average optimal insurance sum over the life cycle.
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Figure 11: Average Key Variables over the Life Cycle with a Short-term Insurance Contract. This figure depicts

the average optimal control variables as well as the average financial wealth and income evolution over the life cycle based on

100 000 simulations. The family has access to a short-term insurance contract that are described in Section 6). a) shows the

average financial wealth evolution over the life cycle. b) depicts the average optimal consumption over the life cycle. The dark line

corresponds to the consumption of the family, whereas the grey line represents the equivalent level of consumption for a one person

household and is scaled with the consumption scaling parameter c/φ. c) shows the optimal average portfolio holdings over the life

cycle. d) depicts the average short-term insurance sum. e) shows the average long-term insurance sum. f) depicts the distribution

of the long-term insurance sum over the life cycle. The darkest area marks families with no insurance contract, the white area

families with the highest insurance sum (2 000 000) and the grey areas families with intermediate insurance sums.
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Figure 12: Total Life Insurance Holdings. This graph depicts the optimal total life insurance holdings of a wage earner

that is alive. These total holdings are the sum of the short-term and long-term insurance demand.
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Figure 13: Average Key Variables over the Life Cycle with Annuities. This figure depicts the average optimal control

variables as well as the average financial wealth and income evolution over the life cycle based on 100 000 simulations. The family

has access to annuities that are described in Section 6. a) shows the average financial wealth evolution over the life cycle. b)

depicts the average optimal consumption over the life cycle. The dark line corresponds to the consumption of the family, whereas

the grey line represents the equivalent level of consumption for a one person household and is scaled with the consumption scaling

parameter c/φ. c) shows the optimal average portfolio holdings over the life cycle. d) depicts the distribution of the annuities over

the life cycle. The darkest area marks families with no annuity contract, the white area families with the highest insurance sum

(30 000) and the grey areas families with an intermediate amount of annuities. e) shows the average long-term insurance sum. f)

depicts the distribution of the insurance sum over the life cycle. The darkest area marks families with no insurance contract, the

white area families with the highest insurance sum (2 000 000) and the grey areas families with intermediate insurance sums.
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Figure 14: Average Key Variables over the Life Cycle with Health Expenses and Health Insurance. This figure

depicts the average optimal control variables as well as the average financial wealth and income evolution over the life cycle based

on 100 000 simulations. The family has access to an additional short-term contract that is described in Section 6. a) shows the

average financial wealth evolution over the life cycle. b) depicts the average optimal consumption over the life cycle. The dark

line corresponds to the consumption of the family, whereas the grey line represents the equivalent level of consumption for a one

person household and is scaled with the consumption scaling parameter c/φ. c) shows the optimal average portfolio holdings over

the life cycle. d) depicts the fraction of agents that is in the health insurance market (H = 1) and contracts a supplemental health

insurance. e) shows the average long-term life insurance sum. f) depicts the distribution of the life insurance sum over the life cycle.

The darkest area marks families with no insurance contract, the white area families with the highest insurance sum (2 000 000) and

the grey areas families with intermediate insurance sums.
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Figure 15: Insurance Demand for Different Levels of Labor Income Volatility. The dark line depicts the average

insurance sum in a model where the labor income volatility before retirement is reduced to σwY = 0.1 and the light line depicts a

reduction to σwY = 0.15. The grey line represents the benchmark results with a labor income volatility of σwY = 0.2. The remaining

parameters are calibrated as stated in Section 4. The results are based on 100 000 simulations for each model.
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Figure 16: Insurance Demand Compared to a Model without Health Shocks. The dark line depicts the average

insurance sum for a different biometric risk calibration without health shocks. Thus, the wage earner can only be in two health

states (A = 1, 3) and the family can contract and increase term life insurance contracts as long as the wage earner is alive and

t < TC . The health shock rate and magnitude are set to zero (κ = 0, k1 = 0, k2 = 0) and the mortality model has a standard

Gompertz structure. The parameter calibration is changed to b = 8.9, m = 85.47 to get a similar death shock distribution as in

the benchmark model with critical illness shocks. The grey line represents the benchmark results including health shocks and with

the original mortality parameters. The remaining parameter are calibrated as stated in Section 4. The results are based on 100 000

simulations for each model.
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Figure 17: Average Key Variables over the Life Cycle with Bequest as Luxury Good. This figure depicts the

average optimal control variables as well as the average financial wealth and income evolution over the life cycle based on 100 000

simulations with luxury bequest motive. The remaining calibration is described in Section 4. a) shows the average financial wealth

evolution over the life cycle. b) depicts the average optimal consumption over the life cycle. The dark line corresponds to the

consumption of the family, whereas the grey line represents the equivalent level of consumption for a one person household and is

scaled with the consumption scaling parameter c/φ. c) shows the optimal average portfolio holdings over the life cycle. d) depicts

the average income of the family. e) shows the average insurance sum. f) depicts the distribution of the insurance sum over the

life cycle. The darkest area marks families with no insurance contract, the white area families with the highest insurance sum

(2 000 000) and the grey areas families with intermediate insurance sums.
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Figure 18: Average Key Variables over the Life Cycle with Social Security. The graphs depict the average optimal

control variables as well as the average financial wealth and income evolution over the life cycle based on 100 000 simulations with

a social security system as given in (7.5). The remaining calibration is described in Section 4. a) shows the average financial wealth

evolution over the life cycle. b) depicts the average optimal consumption over the life cycle. The dark line corresponds to the

consumption of the family, whereas the grey line represents the equivalent level of consumption for a one person household and is

scaled with the consumption scaling parameter c/φ. c) shows the optimal average portfolio holdings over the life cycle. d) depicts

the average income of the family. e) shows the average insurance sum. f) depicts the distribution of the insurance sum over the

life cycle. The darkest area marks families with no insurance contract, the white area families with the highest insurance sum

(2 000 000) and the grey areas families with intermediate insurance sums.
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Figure 19: Insurance Demand with Social Security System. The figure depicts the average insurance sum over the life

cycle for a different income reduction at death p1,3, p2,3. The dark line presents results of a model with social security system as

given in (7.5). The grey line corresponds to the benchmark results without social security system p1,3 = p2,3 = 0. The remaining

parameter are calibrated as stated in Section 4. The results are based on 100 000 simulations for each model.
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Figure 20: Insurance Demand for Different Fees. The light line depicts the average insurance sum in a model where

the fees of the insurance company are increased such that the administrative fee is ψad = 12.68% and the transaction fee equals

ψtr = 13.62%. The values are taken from “map-report no. 807-808” and represent the highest fees in the German life insurance

market. The dark line is for an actuarially fair insurance without fees (ψad = 0, ψtr = 0). The grey line represents the benchmark

results with fees of ψad = 2.99% and ψtr = 5.05% that correspond to average fees in the German life insurance market. The

remaining parameter are calibrated as stated in Section 4. The results are based on 100 000 simulations for each model.
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Figure 21: Insurance Demand for Different Family Sizes. The dark line depicts the average insurance sum over the

life cycle for a family without children. The consumption scaling parameter are changed to φ1,2 = 1.6245 and φ3 = 1. The

light line gives the insurance demand with three children and the corresponding parameters are φ1,2 = 2.6850, φ3 = 2.2078. The

grey line represents the benchmark results for a family with one child and consumption scaling parameters are φ1,2 = 2.0043 and

φ3 = 1.4498. The remaining parameter are calibrated as stated in Section 4. The results are based on 100 000 simulations for each

model.
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Figure 22: Insurance Demand for Different Risk Aversions. The figure depicts the average insurance sum over the life

cycle for different values of the relative risk aversion. The dark line shows results for a low level of relative risk aversion (γ = 3),

the grey line corresponds to the benchmark case with γ = 4 and the light line presents a more risk averse agent with γ = 5. The

remaining parameters are calibrated as stated in Section 4. The results are based on 100 000 simulations for each model.
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