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Abstract

This paper compares two classes of models that allow for additional channels of
correlation between asset returns: regime switching models with jumps and mod-
els with contagious jumps. Both classes of models involve a hidden Markov chain
that captures good and bad economic states. The distinctive feature of a model
with contagious jumps is that large negative returns and unobservable transitions
of the economy into a bad state can occur simultaneously. We show that in this
framework the filtered loss intensities have dynamics similar to self-exciting pro-
cesses. Besides, we study the impact of unobservable contagious jumps on optimal
portfolio strategies and filtering.
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1 Introduction

One of the main contributions in finance over the last 50 years is to point out that corre-

lations have a decisive impact on asset pricing and asset allocation: Risk premia increase

with covariances between asset and market returns, optimal portfolio shares depend on

correlation structures in portfolios, and prices of portfolio derivatives vary with correlation

structures as well. This paper studies a special type of comovement, so-called contagion

or domino effects, and their impact on portfolio decisions. Contagion refers to a situation

where losses in certain assets or asset classes (e.g. bank shares, government bonds) trigger

a cascade of losses in other assets or asset classes. Since contagion effects heavily influence

correlations, capturing them in financial models is crucial. Several approaches to model

contagion have been suggested.1 Important contributions include (hidden) Markov chain

models and self-exciting models that have recently been discussed in the literature. Typ-

ically, Markov chain models distinguish between good (’boom’) and bad (’depression’)

states of the world, where in a bad state the probabilities and/or correlations for/between

losses are higher than in good states. Additionally, some authors assume that agents are

not able to observe the current state of the economy. On the other hand, self-exciting

models directly allow for cascades of self-enhancing increases in loss probabilities. More

precisely, initial losses temporarily increase the probability of further losses, which for-

mally resembles the above-mentioned intuitive interpretation of contagion effects.

Our paper contributes to the existing literature in several dimensions: Firstly, we introduce

a hidden Markov chain model that allows for large negative returns and (unobservable)

regime shifts at the same time. This is a relevant model specification since, economically,

these losses are particularly significant as they happen at the same time when economic

conditions are worsening. We show that exactly this specification induces self-exciting

loss intensities. Recent empirical evidence by Ait-Sahalia, Cacho-Diaz, and Laeven (2012)

suggests that this model class fits stock dynamics very well. Intuitively, our model captures

events such as the ’Black Thursday’, October 24, 1929. On that day, U.S. markets fell by

11% at the opening bell, which marked the beginning of the Wall Street Crash in 1929.2

The connection between self-exciting and hidden Markov chain models is a remarkable

insight since it links together two model classes that, at first sight, seem to be different.

From this point of view, self-exciting models can be interpreted as reduced-form versions

of hidden Markov chain models. We compare this specification with other hidden Markov

chain models and point out differences between the filtered loss intensities in these models

1A more detailed literature survey can be found below.
2The Dow Jones Industrial Average was 305.85 on October 23, 1929, and decreased to 198.69 on

November 13, 1929.
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and in our model. Furthermore, as an application we study asset allocation decisions in

hidden Markov chain models. We find that optimal portfolio strategies differ significantly

depending on whether a regime switching model or a model with contagious jumps is

used. In particular, regime switching models lead to noisier strategies, whereas in the

latter model the updates upon losses are more pronounced. In a simulation study, we

evaluate the performance of several investment strategies relying on different filtering

methods. The utility losses from not filtering at all can be substantial. The utility losses

from using the wrong filter are moderate, but can become significant if the investment

horizon is large (such as 50 years in a life-cycle setting).

There are several ways to capture contagion risk. One strand of literature models conta-

gion as simultaneous Poisson jumps in all assets, e.g. Das and Uppal (2004). Kraft and

Steffensen (2008) extend this approach to bond markets and default risk. Ait-Sahalia,

Cacho-Diaz, and Hurd (2009) consider a setting with several assets. All these papers

abstract from the time dimension of contagion. In particular, the probability of subse-

quent crashes remains the same after a joint jump. The second strand of literature are

regime switching or Markov switching models. Early references in finance and economics

include Schwert (1989), Turner, Startz, and Nelson (1989), and Hamilton (1989). Ang and

Bekaert (2002) apply this approach to a discrete-time asset allocation problem, whereas

Honda (2003) focuses on a continuous-time framework. Recent studies with different inter-

pretations, parametrizations, and calibrations of the regimes include Kole, Koedijk, and

Verbeek (2006) and Guidolin and Timmermann (2007, 2008). Although a regime switch-

ing model can capture the time dimension of contagion, regime shifts are still triggered

by a process that is not linked to a particular crash in some asset. Apart from these two

main ideas of modeling contagion, other approaches have been developed. For instance,

Buraschi, Porchia, and Trojani (2010) focus on the impact of stochastic correlation on an

optimal portfolio and suggest contagion risk as one application of their method.

Some recent papers model contagion effects more explicitly. In this respect, our paper is

related to Branger, Kraft, and Meinerding (2009). They focus on model risk and show

that an investor modeling contagion using joint jumps can suffer severe utility losses once

he is confronted with a Markov regime-switching framework. Kraft and Steffensen (2009)

develop a similar model and apply it to the bond market, but focus on a complete market

only. In contrast to our paper, Branger, Kraft, and Meinerding (2009) and Kraft and

Steffensen (2009) assume that investors can observe the state of the economy perfectly.

Ding, Giesecke, and Tomecek (2009) and Ait-Sahalia, Cacho-Diaz, and Laeven (2012)

propose a different class of stochastic processes to model contagion effects, so-called self-

exciting processes (Hawkes processes). They find that these can generate the empirically
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observed amount of default clustering. Our paper is complementary to their studies. More

precisely, we find that the filtered jump intensities in a model with contagious jumps follow

self-exciting processes with state-dependent coefficients.

Our paper is related to the literature on continuous-time portfolio choice under complete

information starting with Merton (1969, 1971). Early models with jump-diffusion pro-

cesses have been developed by Aase (1984) and Jeanblanc-Picqué and Pontier (1990).

Liu, Longstaff, and Pan (2003) consider a setup with jumps in stock prices and volatil-

ities and solve for the optimal portfolio in an incomplete market. Liu and Pan (2003)

and Branger, Schlag, and Schneider (2008) study related problems with derivatives. Wu

(2003) focuses on a stochastic, but predictable investment opportunity set. Davis and Lleo

(2011) study a portfolio problem allowing jumps in asset prices and factor processes, as

well as stochastic volatility and investment constraints.

Methodologically, our paper also builds on the large amount of literature on learning and

incomplete information. The seminal studies of Detemple (1986) and Dothan and Feld-

man (1986) were among the first applying filtering techniques to asset pricing and asset

allocation under partial information. They show that these problems can be decomposed

into two parts: First a filtering problem must be solved, i.e. the current value of the state

variable is estimated. Second, conditional on the estimated state variable, the optimal

portfolio is determined. In diffusion settings, Honda (2003) studies a portfolio problem

with unobservable regimes and Liu (2011) generalizes his results to ambiguity averse in-

vestors. In a recent paper, Liu, Peleg, and Subrahmanyam (2010) quantify the value of

information in portfolio choice within a diffusion model. Björk, Davis, and Landen (2010)

generalize the mathematical framework to compute optimal investment strategies under

partial information. However, they still assume that asset prices follow diffusion processes.

References on incomplete information about jump processes include Brémaud (1981) and

the recent papers by Frey and Runggaldier (2010) and Frey and Schmidt (2012). Bäuerle

and Rieder (2007) and Callegaro, di Masi, and Runggaldier (2006) use such filters in port-

folio theory. A comprehensive overview of models with incomplete information in finance

is given by Pastor and Veronesi (2009).

The remainder of this paper is structured as follows. Section 2 presents the models (con-

tagion, regime switching), the filtering equations and the link to self-exciting processes.

Section 3 studies the asset allocation problems. In Section 4, we provide numerical re-

sults showing the effect of contagion risk and filtering on an investor’s optimal portfolio

strategy in more detail. Section 5 concludes. All proofs can be found in the Appendix.
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2 Framework

2.1 Three Models

Crucial for the modeling of contagion effects is a channel through which loss depen-

dence can temporarily spike making a sequence of losses more likely. To capture this

self-enhancing effect, self-exciting (Hawkes) models postulate dynamics for loss intensi-

ties that are of the form3

dλt = κ(θ − λt)dt+ σtdWt + `dNt, (1)

where N is a counting process with intensity λ and ` denotes a positive jump size. The

volatility σt is either set to zero or chosen such that λ remains positive (e.g. σt = σ
√
λt).

The main feature of this specification is that jumps (counted by N) temporarily increase

the probability of subsequent jumps, but their impact fades away due to the mean re-

version feature in the drift term. Put differently, without additional jumps the process

reverts back to θ with speed κ.4

Another (more indirect) way to capture domino effects is to allow for different states

of the economy (’good’ and ’bad’) where in bad states loss probabilities increase. Since,

realistically, these states are not observable, agents must filter the current state from

observable asset prices. More precisely, agents filter the probability of being in a particular

state as well as jump intensities. As we will see, this also leads to implied loss intensities

that can be similarly interpreted as (1). The main goals of this section are (i) to derive

these implied loss intensities for economies where contagion is captured by one of several

specifications of a hidden Markov chain model, (ii) to compare them to (1), and (iii) to

highlight which of them can be interpreted as self-exciting processes.

In the standard model by Merton (1969), dependence is induced by correlated Brownian

shocks. This framework is not able to produce realistic probabilities for large losses or for

contagion effects.5 In this paper, we thus consider models that involve a (hidden) Markov

chain capturing the state of the economy and that allow for Poisson jumps. We show that

it is crucial whether transitions of the Markov chain are connected to asset price jumps.

More precisely, the following model specifications are studied:

3See, e.g., Ding, Giesecke, and Tomecek (2009) and Ait-Sahalia, Cacho-Diaz, and Laeven (2012).
4Analogously to a Vasicek model, it is common in the literature to refer to θ as the mean reversion

level (see, e.g., Ait-Sahalia, Cacho-Diaz, and Laeven (2012)). However, the long run mean of λ is generally

different from θ because N is not a martingale.
5See, e.g., Ait-Sahalia, Cacho-Diaz, and Laeven (2012).
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(a) In a pure regime switching model, asset prices follow diffusion processes conditioned

on the state of the economy (see, e.g., Honda (2003)). Such a model allows for additional

dependence compared to the standard model since drift and diffusion parameters can

depend on the state.

(b) In a regime switching model with jumps, asset prices follow jump-diffusion processes

conditioned on the state of the economy. The model allows for jumps within a state and it

is also possible that jump probabilities change across states (see, e.g., Bäuerle and Rieder

(2007)). This can induce additional dependence compared to the model studied by Honda

(2003).

(c) In a model with contagious jumps, it is additionally possible that some of the jumps in

a good state induce a regime shift to a bad state.6 Therefore, this model allows for jumps

within good and bad states, but also for jumps upon transition from a good to a bad

state. A risk averse agent particularly dislikes the latter jumps since declining economic

conditions (via increasing probabilities of future losses) go together with current losses.

We refer to these jumps as contagious.

To highlight the main ideas, we describe the differences between the frameworks for a

simple economy where the investor can invest in a money market account and two risky

assets A and B.7 The dynamics of the money market account are given by

dMt = rMtdt, M0 = 1,

where, for simplicity, the interest rate r is assumed to be constant. The state of the

economy is described by a Markov chain that can be in one of two states, a good or calm

state (’calm’) and a bad or contagion state (’cont’). This is captured by the process pt

that is 1 in the calm state and 0 in the contagion state. Its dynamics are given by

dpt = dN0
t − dN1

t ,

where N0 and N1 are counting processes that trigger jumps into the good or bad state,

respectively. The corresponding intensities are defined by λ0t = (1 − pt)λ
cont,calm and

λ1t = ptλ
calm,cont, where λcalm,cont is the intensity for jumping from the good to the bad

state given that the economy is currently in the good state (and analogously for λcont,calm).

For the regime switching models (a) and (b), the dynamics of the risky asset A are then

6Notice that it is not meaningful to assume that all jumps lead to a regime shift, since then the state

would be observable.
7The extension to n assets is provided in Appendix A.
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defined by (similarly for B)

dSA,t/SA,t− = µptAdt+ vAdW̃A,t − LA
3∑
j=2

dN j
A,t, (2)

where N2
A counts the number of jumps in asset A within the good state. These jumps

happen with intensity λ2A,t = ptλ
calm
A where λcalmA is a constant. Analogously, N3

A counts

the number of jumps in asset A within the bad state. The intensity is λ3A,t = (1− pt)λcontA

with λcontA being a constant. Note that the processes N0 and N1 do not affect the asset

prices directly in the regime switching model since a regime switch is never accompanied

by a contemporaneous loss in one of the assets. The loss size LA and the volatility vA

are the same across states since otherwise agents would be able to infer the state from

realized losses or from the realized volatility. Notice that the pure regime switching model

follows as a special case if we set the loss size LA equal to zero. The drift is given by

µptA = ptµ
calm
A +(1−pt)µcontA with constants µcalmA and µcontA . The process W̃A is a Brownian

motion that is correlated with the shocks of asset B via < W̃A, W̃B >t= ρ ∈ [−1, 1].

Both models can induce additional dependence compared to the standard model by Mer-

ton (1969) since the coefficients depend on the state. A transition into the bad state can

for instance increase the loss probability. This is a reasonable requirement in our setting

and we assume that

λcontA ≥ λcalmA . (3)

Nevertheless, this connection is indirect in the sense that a transition itself does not go

together with a loss. Therefore, we also study a model with contagious jumps.

In framework (c), a contagious jump can occur in the good state (’calm’). It leads to both

a loss in one of the assets and to a transition into the bad state (’cont’) where additional

losses might be more likely. To capture the feature that a loss occurs during a transition

into the bad state, the asset dynamics must depend on the counting process N1 that

counts the number of these transitions. Therefore, the asset dynamics now read

dSA,t/SA,t− = µptAdt+ vAdW̃A,t − LA
3∑
j=1

dN j
A,t. (4)

The important difference between dynamics (2) and (4) is that the sum now starts at one

since contagious jumps can occur. Notice that, in contrast to N2
i , the process N1

i is even

not a Poisson process if we condition on being in the good state. This is because one jump

triggers a transition into the bad state. To avoid that the agent is able to back out that
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a contagious jump has occurred, the corresponding loss size must again be equal to LA.8

Notice that in our model a transition back into the calm state is not linked to a jump in

the asset prices. Therefore, the asset dynamics do not involve the counting process N0.

For a model with contagious jumps, we introduce the following notation for the jump

intensities

λ1A,t = ptλ
calm,cont
A , λ2A,t = ptλ

calm,clam
A , λ3A,t = (1− pt)λcont,contA ,

where λcalm,contA is now the intensity of a contagious jump (and not only of a regime

switch) given that the economy is in the calm state and λcalm,calmA is the intensity of a

non-contagious jump. Therefore, the intensity of a jump in the calm state is defined by

the sum

λcalm,∗A = λcalm,contA + λcalm,clamA .

To make sure that both model classes (b) and (c) have the same jump probabilities in

both states, we assume that9

λcalmA = λcalm,∗A , λcontA = λcont,contA , (5)

where the left-hand sides of the equations are the jump intensities of a regime switching

model, whereas the right-hand sides are the intensities of a model with contagious jumps.

Moreover, we assume

λcalm,cont = λcalm,contA + λcalm,contB (6)

so that a transition from the calm to the contagion state is equally likely in all models

(a)-(c). This assumption allows us to isolate the effect of contagious jumps. Finally, since

the contagion state is the bad state of the economy, we assume that

λcont,conti ≥ λcalm,∗i , (7)

i.e. the probability of losses increases in the contagion state, which is analogous to condi-

tion (3).

8In our model, jump sizes are assumed to be constant. If jump sizes are stochastic, then one can allow

for different expected losses in both states without running the risk that the agent can infer the state

from realized losses. A model with stochastic jump sizes is for instance analyzed in Kraft and Steffensen

(2008).
9Notice that there are no ’contagious’ jumps from the bad state to the good state, i.e. formally

λcont,calmA = 0.
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2.2 Unobservable State

The asset price dynamics depend on the current state of the economy. Realistically, how-

ever, agents are only able to observe asset prices. In the following, we thus assume that

an investor has partial information: Although he knows all model parameters, he cannot

observe the state of the economy, but has to infer it from asset prices. Formally, this is

captured by two filtrations: The ’large’ filtration F includes all information describing

the true data-generating process, while the ’small’ filtration {Gt}t∈[0,T ] ⊂ {Ft}t∈[0,T ] con-

tains the (partial) information available to investors. The filtration {Gt}t∈[0,T ] includes the

history of both asset prices, but not the history of the underlying hidden Markov chain.

Recall that pt ∈ {0, 1} is the indicator variable for being in the good state at time t (e.g.

pt = 0 if the economy is in the bad state). Therefore, we define p̂t as the conditional

expectation p̂t = E[pt|Gt]. In other words, p̂t gives the investor’s filtered probability of

being in the good state at time t.10

The investor can perfectly disentangle jumps from diffusions since we assume a continuous-

time model.11 He observes the total number of jumps N̂A and N̂B defined by12

N̂i = N2
i +N3

i , i = A,B,

in the regime switching model and

N̂i = N1
i +N2

i +N3
i , i = A,B,

in the contagion model. In the contagion model, the agent is however not able to distin-

guish between the three different kinds of jumps on the right hand side (jumps within a

state vs. jumps upon transition). Furthermore, he cannot observe jumps back from the

contagion state to the calm state since these jumps do not have an impact on the asset

prices.

2.3 Filtering the State of the Economy

The next step is to determine the probability dynamics of being in the calm state. Since

we wish to study the differences between regime switching models and our model with

10Note that p̂t = E[pt|Gt] is the estimate for pt that minimizes the mean-square distance between pt

and all square-integrable and Gt-measurable random variables. See, e.g., Brémaud (1981).
11This is, at least asymptotically, even possible in discrete-time models, see e.g. Ait-Sahalia (2004) or

Johannes, Polson, and Stroud (2009).
12We will stick to this notational convention throughout the remainder of the paper. Variables with a

’hat’ denote subjective numbers that the investor estimates from his observations. Variables without a

’hat’ represent the true numbers in the economy.
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contagious jumps, we derive filter equations for both model classes. In portfolio problems

with unobservable states, these dynamics serve as an additional state variable.13 Fur-

thermore, we are interested in the filtered jump intensities of asset prices. For a regime

switching model with jumps, they are defined by

λ̂rsi = p̂rsλcalmi + (1− p̂rs)λconti , (8)

whereas for a model with contagious jumps we have

λ̂i = p̂
(
λcalm,calmi + λcalm,conti

)
+ (1− p̂)λcont,conti . (9)

The following proposition summarizes our results that are formulated for n assets.14

Proposition 1 (Filtered Probability) (i) In a regime switching economy with n as-

sets, the filtered probability of being in the calm state is given by15

dp̂rst =

(
(1− p̂rst )λcont,calm + p̂rst

{
n∑
i=1

λ̂rsi −
n∑
i=1

λcalmi

}
− p̂rst λcalm,cont

)
dt (10)

+p̂rst (1− p̂rst )(µcalm − µcont)Σ−TdŴt +
n∑
i=1

(
p̂rst−λ

calm
i

λ̂rsi
− p̂rst−

)
dN̂i,t.

(ii) In a model with contagious jumps and n assets, the filtered probability of being in the

calm state is given by

dp̂t =

(
(1− p̂t)λcont,calm + p̂t

{
n∑
i=1

λ̂i −
n∑
i=1

λcalm,∗i

})
dt (11)

+p̂t(1− p̂t)(µcalm − µcont)Σ−TdŴt +
n∑
i=1

(
p̂t−λ

calm,calm
i

λ̂i
− p̂t−

)
dN̂i,t.

Remark. In one of our applications, we consider the case where the investor disregards

diffusive information. The corresponding (suboptimal) filter follows if the diffusion term

in (11) are disregarded.

The two filter equations have identical diffusive terms, which are known from Honda

(2003). The equations however differ in two respects: Firstly, the drift terms differ (com-

pare the dt-terms in (10) and (11)). In the regime switching model, there is an additional

13See, e.g., Detemple (1986) and Dothan and Feldman (1986).
14The proofs can be found in Appendix A.
15A special case for one asset and without filtering from different drifts appears in Bäuerle and Rieder

(2007). Their model also does not involve contagious jumps.
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term, −p̂rst λcalm,cont, that is always negative. The rest of the drift (and also the drift in

the model with contagious jumps) is always positive since, by definitions (8) and (9), the

differences in the curly brackets are positive. Therefore, in the model with contagious

jumps the drift is always positive and p̂ is drifting upwards towards one as long as no

jump occurs, whereas, in the regime switching model, the drift becomes negative if p̂rs is

close to one. In the latter case, the mean reversion level of p̂rst is thus between 0 and 1.

Secondly, there is a difference in the jump sizes, which can be interpreted as updates of

the filters if asset price jumps occur. In the model with contagious jumps, the jump size is

larger because a jump can be contagious. The occurrence of a jump reveals more negative

information than in a regime switching model.

2.4 Relation to Self-exciting Processes

Now, we determine the implied filtered jump intensity of an asset and compare it to the

self-exciting model (1). For simplicity, this section focuses on the one asset case.16 By (8)

and (9), the dynamics of the implied filtered jump intensity are given by

dλ̂rsi = (λcalmi − λconti )dp̂rs, dλ̂i = (λcalm,∗i − λcont,conti )dp̂.

Using one-dimensional versions of (10) and (11) with n = 1 and i = A yields the following

results.

Proposition 2 (Filtered Jump Intensities) (i) In a regime switching economy with

one asset, the implied filtered jump intensity is given by

dλ̂rsA,t = ςrsA,tdt+ ζrsA,tdŴA,t + `rsA,tdN̂A,t,

where

ςrsA,t = −(λ̂rsA,t − λcalmA )λcont,calm − (λ̂rsA,t − λcalmA )(λcontA − λ̂rsA,t) + (λcontA − λ̂rsA,t)λcalm,cont

ζrsA,t =
(λcontA − λ̂rsA,t)(λ̂rsA,t − λcalmA )

λcontA − λcalmA

· µ
cont
A − µcalmA

vA

`rsA,t = (λcontA − λ̂rsA,t) ·
λ̂rsA,t − λcalmA

λ̂rsA,t
.

(ii) In a model with contagious jumps and one asset, the implied filtered jump intensity is

given by

dλ̂A,t = ςA,tdt+ ζA,tdŴA,t + `A,tdN̂A,t,

16The generalization to a multi-asset case is possible and would lead to mutually exciting point processes

as discussed by Ait-Sahalia, Cacho-Diaz, and Laeven (2012). This is a multi-dimensional version of (1).
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where

ςA,t = −(λ̂A,t − λcalm,∗A )λcont,calm − (λ̂A,t − λcalm,∗A )(λcont,contA − λ̂A,t)

ζA,t =
(λcont,contA − λ̂A,t)(λ̂A,t − λcalm,∗A )

λcont,contA − λcalm,∗A

· µ
cont
A − µcalmA

vA

`A,t = (λcont,contA − λ̂A,t) ·
λ̂A,t − λcalm,calmA

λ̂A,t
.

First, the filtered probabilities are differently updated as a response to asset price jumps:

If there are contagious jumps (λcalm,contA > 0), then λcalmA > λcalm,calmA (see condition

(5)). Therefore, everything else equal, we obtain `A,t > `rsA,t, i.e. the jump of the filtered

probability is larger in the model with contagious jumps. This is because asset price jumps

are more informative in this model.

Second, in the regime switching model, the drift ςrsA,t can be decomposed into three terms:

The first term always pulls the intensity downwards because of the possibility to switch

from the bad into the good state, which cannot be observed. The second term is always

negative and is driven by the fact that the jump intensities in both states differ. When

no jumps occur, the investor can learn from this information, since on average there are

less jumps in the calm state. The third term, which always drives up the intensity, is

present since in the regime switching model changes from the calm to the contagion state

are unobservable. This third term does not show up in the dynamics of the model with

contagious jumps where the drift can be rewritten as

κt(λ
calm,∗
A − λ̂A,t)

with state dependent mean reversion speed κt = λcont,calm + λcont,cont − λ̂A,t > 0. In the

model with contagious jumps, λcalm,∗A can be interpreted in a similar way as θ in (1). In

particular, λcalm,∗A is a lower bound for λ̂A,t. In a regime switching economy, the additional

third term, (λcont − λ̂rsA,t)λcalm,cont, changes this property. More precisely, the drift ςrsA,t is

a quadratic function of λ̂rs. For λ̂rs = λcalm the drift is positive, and for λ̂rs = λcont it is

negative. Consequently, there must be a root between these two points. The process λ̂rs

is thus fluctuating around a level λ∗ that is between λcalm and λcont. Therefore, λ̂rs can

have a positive or negative drift, which distinguishes λ̂rs from a self-exciting process and

which is in sharp contrast to the filtered intensity λ̂ in a model with contagious jumps.

To understand this point, consider the general case with diffusion, ζrsA,t 6= 0. Then λ̂rs can

fall below λ∗. Although the drift of λ̂rs vanishes at λ∗, diffusive shocks can push λ̂rs below

λ∗. By the definition of λ∗, this leads to a positive drift. Notice however that in the special
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case where there is no diffusion in the regime switching model and the process λ̂rs starts

at a level above λ∗, the filtered probability λ̂rs can never fall below λ∗. This is because

the jump size is always positive and the drift becomes zero near λ∗.

3 Optimal Portfolio Choice

This section is concerned with studying the effects of the different model specifications

on asset allocation. In particular, we analyze the impact of contagious jumps. Notice that

the portfolio problem can be solved in two steps. In the first step, the investor solves a

filtering problem, i.e. he estimates the current value of the state variable. Secondly, he

decides on his optimal portfolio conditional on the just estimated state variable and its

dynamics.17

3.1 Optimization Problem

We consider an investor with CRRA utility u(c) = c1−γ

1−γ where γ > 0 denotes his relative

risk aversion. The planning horizon is denoted by T . The investor maximizes expected

utility from terminal wealth XT . His indirect utility at time t depends on his wealth Xt

and the filtered probability of being in the good state, p̂t, which, depending on the applied

filter, follows the dynamics given in Section 2.3. It is defined as

G(t, x, p̂t) = max
π∈A(t,p̂t)

Et,x
[
u(XT )|Gt

]
where A(t, p̂t) denotes the set of all admissible trading strategies and π = (πA, πB). Due to

event risk, the investor faces an incomplete market. In order to choose optimal exposures

to the different sources of risk (diffusion and jumps), he can adjust the weights πA and

πB of the two risky assets in his portfolio. His budget constraint reads

dXt

Xt−
= πA(t, p̂t)

dSA,t
SA,t−

+ πB(t, p̂t)
dSB,t
SB,t−

+
[
1− πA(t, p̂t)− πB(t, p̂t)

]
rdt. (12)

In the remainder of this section, we solve for the indirect utility functions and the optimal

portfolio weights in three different cases: First, we consider our model with contagious

jumps. Second, we derive the solution in this model if the agent disregards information

stemming from diffusive shocks. Third, we study a regime-switching model. In all three

cases, we conjecture that the indirect utility is given by

G(t, x, p̂) =
x1−γ

1− γ
f(t, p̂), (13)

17See, e.g., Detemple (1986), Dothan and Feldman (1986), and Bäuerle and Rieder (2007).
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where x denotes current wealth and p̂ the filtered probability. The corresponding function

f is part of the solution and must be determined either explicitly or numerically.

3.2 Portfolio Choice with Contagious Jumps

In this model, the agent uses the filter (11). His budget constraint is given by (12). The

indirect utility function G(t, x, p̂) solves the Bellman equation18

max
πA,πB

{
Gt +Gx[r + πA (µ̂A − r) + πB (µ̂B − r)]

+Gp

[
(1− p̂t)λcont,calm − p̂t(λcalm,contA + λcalm,contB )

− p̂t(λ
calm,calm
A − λ̂A)− p̂t(λcalm,calmB − λ̂B)

]
+ 0.5Gxx

[
v2Aπ

2
A + 2ρvAvBπAπB + v2Bπ

2
B

]
+ 0.5Gpp

p̂2(1− p̂)2

1− ρ2

[
(µcalmA − µcontA )2

v2A
− 2ρ

(µcalmA − µcontA )(µcalmB − µcontB )

vAvB
+

(µcalmB − µcontB )2

v2B

]
+Gpx

[
(1− γ)p̂(1− p̂)

(
πA(µcalmA − µcontA ) + πB(µcalmB − µcontB )

)
+ (1− p̂)λcont,calm − p̂(λcalm,contA + λcalm,contB ) + p̂

(
λ̂A + λ̂B − λcalm,calmA − λcalm,calmB

)]
+
(
GA,+ −G

)
λ̂A +

(
GB,+ −G

)
λ̂B

}
= 0,

where subscripts denote partial derivatives. The notation Gi,+ refers to the function G

immediately after a jump in asset i ∈ {A,B}. Substituting the conjecture (13) into the

Bellman equation yields a system of equations for f and the optimal demands, πA and

πB, that can be solved numerically. The following proposition summarizes our results.19

Proposition 3 (Solution with Contagious Jumps) In a model with contagious jumps,

the optimal portfolio weights satisfy the first-order conditions

f ·
[
µ̂A − r − γ(πAv

2
A + ρvAvBπB)

]
+ fp · p̂(1− p̂)(µcalmA − µcontA )

−f

(
t,
λcalm,calmA

λ̂A
p̂

)
· LA(1− πALA)−γλ̂A = 0

f ·
[
µ̂B − r − γ(πBv

2
B + ρvAvBπA)

]
+ fp · p̂(1− p̂)(µcalmB − µcontB )

−f

(
t,
λcalm,calmB

λ̂B
p̂

)
· LB(1− πBLB)−γλ̂B = 0,

18Qualitatively, the Bellman equation is similar to the equations by Kraft and Steffensen (2008) and

Kraft and Steffensen (2009) where the interested reader can find more information on verification results.
19The proof is given in Appendix B.
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where f solves

f ·
[
(1− γ)r + (1− γ)πA(µ̂A − r) + (1− γ)πB(µ̂B − r) (14)

−0.5γ(1− γ)
(
v2Aπ

2
A + 2ρvAvBπAπB + v2Bπ

2
B

)
− λ̂A − λ̂B

]
+fp ·

[
(1− γ)p̂(1− p̂)

(
πA(µcalmA − µcontA ) + πB(µcalmB − µcontB )

)
+(1− p̂)λcont,calm − p̂(λcalm,contA + λcalm,contB ) + p̂

(
λ̂A + λ̂B − λcalm,calmA − λcalm,calmB

)]
+fpp ·

0.5p̂2(1− p̂)2

1− ρ2

[
(µcalmA − µcontA )2

v2A
− 2ρ

(µcalmA − µcontA )(µcalmB − µcontB )

vAvB
+

(µcalmB − µcontB )2

v2B

]
+f

(
t,
λcalm,calmA

λ̂A
p̂

)
· (1− πALA)1−γλ̂A + f

(
t,
λcalm,calmB

λ̂B
p̂

)
· (1− πBLB)1−γλ̂B + ft = 0

with boundary conditions f(T, ·) = 1 and fp(T, ·) = 0.

As usually in incomplete market problems with jumps, the first-order conditions and the

Bellman equation (14) can only be solved simultaneously.

The indirect utility function and the optimal portfolio weights πi depend on the state

variable p̂. Since p̂ evolves stochastically following a jump-diffusion process, the optimal

portfolio weights are also stochastic. Besides, the demands are monotonic functions of p̂.

Consequently, as long as no jump is observed, they continuously revert back to the optimal

portfolio for p̂ = 1 where the investor is sure to be in the calm state. If a jump occurs,

the portfolio weights are reduced by a discrete amount towards the optimal portfolio for

p̂ = 0.

To interpret the optimal portfolio strategy, assume for simplicity that the correlation ρ

between the diffusion components is zero. The first-order condition for asset A can then

be rewritten as

πA =
µ̂A − r
γv2A

+ p̂(1− p̂)µ
calm
A − µcontA

γv2A

fp
f
−
f
(
t,
λcalm,calmA

λ̂A
p̂
)

f

LA(1− πALA)−γλ̂A
γv2A

(15)

The optimal portfolio strategy consists of three parts:20 The first term is the myopic

demand that depends on the filtered probability of being in the calm state. This term is

a weighted average of the optimal demands in the two states if the state was known with

certainty:
µ̂A − r
γv2A

= p̂
µcalmA − r
γv2A

+ (1− p̂)µ
cont
A − r
γv2A

. (16)

20In the special case of a pure regime switching model (LA = 0), we recover the result of Honda (2003).
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The second term captures hedging motives stemming from the continuous updating of p̂

due to diffusion. The hedge term is large if there is a lot of uncertainty about the state

(p̂ ≈ 0.5), if the states are heterogenous with respect to the drifts (|µcalmA −µcontA | large), if

the signal is not too noisy (vA small), and if the indirect utility is sensitive to changes in

the filtered probability (|fp|/f large). The sign of the term depends on which of the two

states is more attractive. This is determined by the risk premia in the states. In fact, the

derivative fp can be both positive or negative.

The third term adjusts the portfolio strategy with respect to possible crashes in the asset.

Since contagious jumps involve two aspects (regime switch and loss), this term consists

of two parts. First, there is a term that accounts for the loss and that is also present in a

model with event risk, but no state variable (see, e.g., Liu, Longstaff, and Pan (2003)):

− LA(1− πALA)−γλ̂A
γv2A

. (17)

This term is negative and thus adjusts the demand downwards. In our model, the de-

mand additionally involves the ratio f
(
t,
λcalm,calmA

λ̂A
p̂
)
/f , which amplifies or dampens the

adjustment term (17) depending on which state is more attractive. For instance, if the

expected returns in the contagion state are smaller than in the calm state, then fp < 0

and this ratio is greater than one, which puts more weight on (17) so that the demand

arising from jump risk becomes more negative. The ratio is present due to the optimal

updating of the filtered probability. If the asset price jumps, then the probability of being

in the calm state, p̂, decreases to p̂λcalm,calmA /λ̂A since λcalm,calmA < λ̂A.

Finally, we wish to remark that the second and third term (the hedging terms for diffusive

and jump risk) partly cancel each other out. This is for the following reasons: The third

term is always negative. The sign of the second term depends on the signs of fp and

µcalmA − µcontA . Since, by definition, the contagion regime is a bad state, it is likely that

µcalmA − µcontA is positive. If µcalmA − µcontA is positive, the contagion state is perceived worse

than the calm state so that fp is negative. In this case, f
(
t,
λcalm,calmA

λ̂A
p̂
)
/f is larger than

one. Therefore, the second term is positive if the third term is very negative and vice

versa.

3.3 Portfolio Choice with Pure Jump Filter

In our numerical analysis, we also study the case where the investor ignores diffusive

information and relies on the information from jumps only. In a model with contagious

jumps, one might argue that this information might be ’sufficient’ to find an ’almost
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optimal’ portfolio strategy. In fact, our numerical results show that the utility loss from

ignoring diffusive information is negligible if there are contagious jumps. The indirect

utility is still of the form (13).

Proposition 4 (Solution with Pure Jump Filter) If the investor uses the pure jump

filter to estimate the current state of the economy, the optimal portfolio weights satisfy

the first-order conditions

f ·
[
µ̂A − r − γ(πAv

2
A + ρvAvBπB)

]
− f

(
t,
λcalm,calmA

λ̂A
p̂pjf

)
· LA(1− πALA)−γλ̂A = 0,

f ·
[
µ̂B − r − γ(πBv

2
B + ρvAvBπA)

]
− f

(
t,
λcalm,calmB

λ̂B
p̂pjf

)
· LB(1− πBLB)−γλ̂B = 0,

where

f ·
[
(1− γ)r + (1− γ)πA(µ̂A − r) + (1− γ)πB(µ̂B − r)

−0.5γ(1− γ)
(
v2Aπ

2
A + 2ρvAvBπAπB + v2Bπ

2
B

)
− λ̂A − λ̂B

]
+fp ·

[
(1− p̂pjf )λcont,calm − p̂pjf (λcalm,contA + λcalm,contB ) + p̂pjf

(
λ̂A + λ̂B − λcalm,calmA − λcalm,calmB

)]
+f

(
t,
λcalm,calmA

λ̂A
p̂pjf

)
· (1− πALA)1−γλ̂A

+f

(
t,
λcalm,calmB

λ̂B
p̂pjf

)
· (1− πBLB)1−γλ̂B + ft = 0

with boundary conditions f(T, ·) = 1 and fp(T, ·) = 0. The subjective drift rate and jump

intensity of asset i ∈ {A,B} are defined as

µ̂i = p̂pjfµcalmi + (1− p̂pjf )µconti

λ̂i = p̂pjf
(
λcalm,calmi + λcalm,conti

)
+ (1− p̂pjf )λcont,conti .

3.4 Portfolio Choice in a Regime Switching Model

Finally, we consider a regime switching model with jumps. The solutions can be found

analogously to the results in Honda (2003) and Bäuerle and Rieder (2007).

Proposition 5 (Solution in a Regime Switching Model) In a regime switching model
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with jumps, the optimal portfolio weights satisfy the first-order conditions

f ·
[
µ̂A − r − γ(πAv

2
A + ρvAvBπB)

]
+ fp · p̂rs(1− p̂rs)(µcalmA − µcontA )

−f

(
t,
λcalmA

λ̂rsA
p̂rs

)
· LA(1− πALA)−γλ̂rsA = 0

f ·
[
µ̂B − r − γ(πBv

2
B + ρvAvBπA)

]
+ fp · p̂rs(1− p̂rs)(µcalmB − µcontB )

−f

(
t,
λcalmB

λ̂rsB
p̂rs

)
· LB(1− πBLB)−γλ̂rsB = 0

where f solves

f ·
[
(1− γ)r + (1− γ)πA(µ̂A − r) + (1− γ)πB(µ̂B − r)

−0.5γ(1− γ)
(
v2Aπ

2
A + 2ρvAvBπAπB + v2Bπ

2
B

)
− λ̂rsA − λ̂rsB

]
+fp ·

[
(1− γ)p̂rs(1− p̂rs)

(
πA(µcalmA − µcontA ) + πB(µcalmB − µcontB )

)
+(1− p̂rs)λcont,calm − p̂rsλcalm,cont + p̂rs(λ̂rsA + λ̂rsB − λcalmA − λcalmB )

]
+fpp ·

0.5(p̂rs)2(1− p̂rs)2

1− ρ2

[
(µcalmA − µcontA )2

v2A
− 2ρ

(µcalmA − µcontA )(µcalmB − µcontB )

vAvB
+

(µcalmB − µcontB )2

v2B

]
+f

(
t,
λcalmA

λ̂rsA
p̂rs

)
· (1− πALA)1−γ λ̂rsA f

(
t,
λcalmB

λ̂rsB
p̂rs

)
· (1− πBLB)1−γ λ̂rsB + ft = 0

with boundary conditions f(T, ·) = 1 and fp(T, ·) = 0.

4 Numerical Results

4.1 Parametrization and Calibration

We consider a CRRA investor with a relative risk aversion of γ = 3 and a planning

horizon of 20 years. The riskless interest rate is set to r = 0.01. The risky assets are

assumed to follow identical stochastic processes. Furthermore, we assume that only the

jump intensities and the drift rates differ between the calm and the contagion state, while

the diffusion parameters and the loss sizes do not depend on the current state as already

explained above. We choose representative parameters for our model that are roughly in

line with Eraker, Johannes, and Polson (2003) who estimate the parameters of a jump-

diffusion model under the true physical measure from S&P500 and Nasdaq 100 index

returns.

The diffusion volatility σ is set to 0.15 and the Brownian motions have a local correlation

of ρ = 0.3. The constant jump size is assumed to be -5%, i.e. the loss size Li equals
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0.05. The difference between the jump intensities in the calm and the contagion state is

captured by the multiple ξi ≥ 1:

λcont,conti = ξiλ
calm,∗
i , i ∈ {A,B},

where we set ξi = 5 and λcalm,∗i = 0.5. The conditional probability that a loss in one of

the assets triggers contagion is given by αi:

λcalm,conti = αiλ
calm,∗
i , i ∈ {A,B},

where we set αi = 0.25. This determines all intensities and their values are reported in

Table 1. The intensity for transitions back to the calm state, λcont,calm, is set to 1 so that

a contagion period lasts on average one year. The drift µi is 0.09 in the calm state and

0.14 in the contagion state. This implies expected annual returns of the risky assets of

0.065 in the calm state and 0.015 in the contagion state, i.e. the higher jump intensities

in the contagion state do not only increase the conditional variance of stock returns, but

also affect the expected returns. The first column of Table 1 gives an overview over this

parametrization.

As a robustness check, we introduce four other parametrizations where we vary one par-

ticular parameter while leaving all the other parameters unchanged. In these cases, we

change αi from 0.25 to 0.5, λcont,calm from 1 to 2, γ from 3 to 10 and ρ from 0.3 to 0.6,

respectively.

4.2 Filter Dynamics

Figure 1 depicts typical sample paths of both assets. The economy is in the calm state for

the first five years and then jumps into the contagion state for one year where the jump

probabilities are higher. Finally, the calm state is reached again. The transition into the

contagion state is triggered by a loss in asset A. We thus assume that there is a contagious

jump after five years. Consequently, we allow for contagious jumps in the data generating

model. This assumption is supported by recent empirical evidence (see Section 1). Notice

however that in the first five years the price paths would be identical in ’both worlds’,

with and without contagious jumps. Therefore, this period is well suited to compare the

behavior of both filters, independent of an assumption about whether contagious jumps

exist.

The corresponding filter dynamics are shown in the upper panel of Figure 2. The red line

corresponds to the filter for a model with contagious jumps (contagious filter), whereas the

black line depicts the realized path of the filter for a model with regime switching (regime
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switching filter). There are two clear differences between the filters: First, the jumps of

the contagious filter are larger. This is because jumps in a contagion model reveal more

information than in the regime switching model without contagious jumps. Under the

given parametrization, on average every fourth jump in the calm state is contagious so

that the update of the filter after the observation of a jump is larger in the model with

contagious jumps.

Second, the regime switching filter is noisier. The differences result from the fact that,

in contrast to the regime switching filter, the contagious filter induces a self-exciting

model. As already pointed out in Section 2.3, the mean reversion levels of the two models

are located at different places: For the contagious filter the mean-reversion level of the

estimated jump intensity corresponds to the minimal jump intensity (or probability),

whereas for the regime switching filter the level is higher. This is because the regime

switching filter assumes that the economy can always silently slip into the bad state.

Therefore, the reaction to jumps is more pronounced for the contagious filter and its

diffusion is shut down if the filter reaches its mean reversion level. On the contrary, the

volatility of the regime switching filter is still positive around its mean reversion level and

thus the filter is noisier.

4.3 Optimal Portfolios

The filter dynamics described in the previous section have a direct effect on the optimal

portfolio weights, which are depicted in the lower panel of Figure 2. Since both assets

have identical parameters, the portfolio weights for asset A and asset B are equal. It

can be seen that the portfolio weights vary significantly with the filters, since there is a

monotonous dependence between the weights and the filtered probabilities. In particular,

the weight dynamics are noisier for the regime switching filter and the weight updates

after a jump are more pronounced for the contagious filter. Notice that in our numerical

example the optimal portfolio weights vary between about 60%, if the investor is sure to

be in the calm state, and 5%, if the investor is sure to be in the contagion state.

Figure 2 shows that the investor underreacts to jumps that induce contagion and overre-

acts to ordinary jumps. If a jump in one of the assets triggers contagion, a fully informed

investor should switch to the optimal portfolio of the contagion state in one single step.

However, the reaction of an investor with incomplete information is too small, and it

takes several subsequent jumps for the investor to gradually adjust his portfolio towards

the portfolio that is optimal in the contagion state (contagion portfolio). If, on the other

hand, a non-contagious jump occurs, then the investor overreacts to this event by adjust-
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ing the weights towards the contagion portfolio while a fully informed investor would have

kept the weights constant. If no subsequent jumps are observed, the partially informed

investor will then continuously readjust his portfolio back to the portfolio that is optimal

when the filtered probability is at the mean reversion level. For the contagious filter the

mean-reversion level of the estimated probability is one, whereas for the regime switching

filter the level is higher. Interestingly, these over- and underreaction patterns occur for

both filters (contagious and regime switching), but the overreaction is less pronounced for

the regime switching filter.

It is important to remark that for a given filtered probability the two weights are not very

different per se. This can be seen in Figure 3 where the solid red line depicts the optimal

weights with contagious jumps, whereas the dashed-dotted blue line depicts the weights

for a regime switching model as a function of the filtered probability p̂. Since the optimal

weights depend on p̂ almost linearly, most of the deviations between the two strategies

(see lower panel of Figure 2) come from the difference in the filtered probabilities that

are shown in the upper panel of Figure 2. For instance, the update of the contagious

filter upon a loss is more pronounced and thus this jump in the filtered probability has a

larger effect on the portfolio weight, which can be seen in Figure 4. The portfolio update

is particularly large for p̂ around 0.6 where the uncertainty is very large. Moreover, the

portfolio update in the regime switching model is 0 if p̂ equals 1. Therefore, if the investor

was sure to be in the calm state, the occurrence of a jump would not affect his opinion

about the state of the economy.

4.4 Misspecification

In the previous subsections, we have not taken a clear stance on whether there are con-

tagious jumps in the data generating model, but have analyzed the qualitative aspects

of the two frameworks. Now, we quantify the utility losses if there are contagious jumps,

but the agent ignores them and filters using the regime switching filter. For comparison,

we also consider situations where the agent disregards diffusive information or does not

filter at all. For this exercise, the solution to the model with contagious jumps serves as

benchmark and we express all utility losses relative to this case. More precisely, we calcu-

late the percentage decreases δ in initial wealth that are necessary to reduce the expected

utility of the optimal strategy to the expected utilities of some of the other strategies, i.e.

Gopt(x(1 − δ)) = Gsubopt(x) where Gopt is the indirect utility function in the model with

contagious jumps and Gsubopt is the expected utility of a suboptimal strategy.21 The form

21We have omitted the dependence on time and the filtered probability.
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(13) of the indirect utility functions yields22

δ = 1−
(
fsubopt
fopt

) 1
1−γ

.

Table 2 summarizes the results for an investor with relative risk aversion γ = 3 that have

been computed by running Monte Carlo simulations. Technically, we simulate 250,000

paths of the economy under the full filtration and compute the perceived Brownian mo-

tions and Poisson processes defined in Section 2. Then, we implement the portfolio strate-

gies according to the resulting sample paths of the filtered probabilities.23 To assess the

utility loss from not filtering at all, we implement a strategy with constant portfolio

weights. We choose the constant weights that ex-ante yield the highest indirect utility

among all constant strategies. Therefore, the corresponding utility loss provides a lower

bound on the loss of an investor that implements some constant strategy. Notice that

choosing constant portfolio weights is equivalent to not updating the probability of being

in the calm state.

We find several relevant results reported in Table 2: First, comparing columns (a) and (b)

with column (c) shows that filtering matters. Second, disregarding diffusive information

always leads to negligible utility losses.24 Third, disregarding contagious jumps causes up

to six times higher utility losses, although the absolute losses are moderate. Notice however

that we assume an investment horizon of 20 years. Numerical experiments not reported

here show that the utility losses are almost linearly increasing in the time horizon. In a

life-cycle context with a horizon of more than 50 years, losses can thus amount to about

1%, which is considered as substantial in the literature (see Cocco, Gomes, and Maenhout

(2005)). On the other hand, losses are much smaller for more risk averse investors (γ = 10).

This is because these investors put less money into stocks and thus misspecified strategies

matter less.

22Notice that this loss function is different from the one used for filtering, which is a mean-square loss

function. Nevertheless, we stick to this practice, since it is standard in the portfolio choice literature. We

thank an anonymous referee for bringing this issue to our attention.
23For each sample path, we assume an initial value of 0.5 for both state variables. Robustness checks

have shown that this assumption is not crucial.
24This conclusion assumes that we know the true coefficients of the diffusion parts of the models. We

thank an anonymous referee for bringing that to our attention.
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5 Conclusion

This paper studies a model for contagion effects that are triggered by certain crashes in

asset prices. Since the individual cannot distinguish between ordinary crashes and crashes

that let the economy slip into contagion, he filters the probability of being in the conta-

gion state from price observations. We relate our model to frameworks using self-exciting

processes and show that only a model with contagious jumps induces a self-exciting pro-

cess for jump intensities. We also compare our model to a model with regime switching

and show that, in general, this model class does not induce self-exciting dynamics. This

is because the corresponding mean reversion levels of filtered jump intensities are higher.

Our results also show that the risk of contagion and the partial information about the

current state of the economy can have a substantial effect on an investor’s optimal portfolio

strategy. Since the investor only learns gradually about whether the economy has entered

the contagion state, he gradually adjusts his portfolio towards the portfolio that would

be optimal in the (unobservable) contagion state. This causes him to underreact to jumps

that induce contagion and to overreact to ordinary jumps. On the other hand, agents

using a regime switching filter implement a noisier portfolio strategy. In a simulation

study, we evaluate the performance of several investment strategies. We find that filtering

matters for portfolio decisions. The utility losses of using the wrong filter are moderate,

but can become significant if the investment horizon is large (such as 50 years in a life-cycle

setting).

22



A Filtering the State of the Markov Chain

We derive the filter equations both in the regime switching model and in the model with

contagious jumps for an economy with n risky assets. Section A.3 gives the filter of an

investor who – suboptimally – neglects the information from diffusive noise and relies on

jump observations only in an economy with contagious jumps.

A.1 Filtering in a Model with Contagious Jumps

Under the full filtration F , the asset prices follow

dSi,t/Si,t− = µpti dt+ vidW̃i,t − Li
3∑
j=1

dN j
i,t

where, in general, the diffusion processes W̃i need not be mutually independent, but can

be correlated. In order to keep the notations simple, we will replace the W̃i by mutually

independent Wiener processes Wi and introduce the correlation structure through the

variance-covariance matrix ΣΣT , so that the full vector of asset prices follows the process dS1,t/S1,t−
...

dSn,t/Sn,t−

 =

 µpt1
...

µptn

 dt+ Σ

 dW1,t

...

dWn,t

−
 L1

∑3
j=1 dN

j
1,t

...

Ln
∑3

j=1 dN
j
n,t

 .

Under the investor’s filtration G, the dynamics are given by dS1,t/S1,t−
...

dSn,t/Sn,t−

 =

 µ̂1

...

µ̂n

 dt+ Σ

 dŴ1,t

...

dŴn,t

−
 L1dN̂1,t

...

LndN̂n,t

 .

where the subjective drift and jump intensity of asset i are defined as

µ̂i = p̂tµ
calm
i + (1− p̂t)µconti

λ̂i = p̂t

(
λcalm,calmi + λcalm,conti

)
+ (1− p̂t)λcont,conti

and p̂t denotes the subjective probability of being in the calm state at time t. Note that

the diffusion volatilities and correlations do not depend on the state of the economy and

are known to the investor. The Brownian motions under the investor’s filtration G satisfy

dŴt = dWt + Σ−1(µpt − µ̂)Tdt
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and the observable jumps are driven by the processes

N̂i = N1
i +N2

i +N3
i , i ∈ {A,B}.

To deduce the filter equation, we build on the results of Frey and Runggaldier (2010).

Our model can be viewed as a special case of theirs. The subjective probability of being

in the calm state, p̂, can be written as

p̂ =
σcalm

σcont + σcalm
.

The processes σcalm and σcont then satisfy so-called Zakai equations. We take these Zakai

equations from section 4 of Frey and Runggaldier (2010). The Zakai equations for the time

between two observable jumps are given in Proposition 4.1 of their paper. Translated into

their notation, our model has two states (k = 1: calm, k = 2: contagion). Our jump

intensities translate into their notation as follows:

λ(calm, y) =
n∑
i=1

λcalm,calmi +
n∑
i=1

λcalm,conti = λcalm,∗

λ(cont, y) =
n∑
i=1

λcont,conti = λcont,∗

are the total intensities for ’defaults’ (i.e. observable jumps) in the calm and contagion

state, respectively. The intensities for unobservable jumps, i.e. ’transitions’ of the Markov

chain without default, qyk,i, are zero in our model except for qycont,calm = λcont,calm. Moreover,

let dΨt be the diffusion part of the asset price which is denoted by dZn
t in Frey and

Runggaldier (2010). Under the full filtration F , this diffusion part reads

dΨt = (µpt)Tdt+ ΣdWt.

Under the investor filtration G, this diffusion part reads

dΨt = µ̂Tdt+ ΣdŴt (18)

Taken together, we get the Zakai equations for the time between the (n − 1)th and the

nth observable jump

dσcalmt = −λcalm,∗σcalmt dt+ λcont,calmσcontt dt+ σcalmt µcalm
(
ΣΣT

)−1
dΨt

dσcontt = −λcont,∗σcontt dt− λcont,calmσcontt dt+ σcontt µcont
(
ΣΣT

)−1
dΨt.

In contrast to Frey and Runggaldier (2010), the observable jumps in our model are not

jumps to default so that the total number of assets in our economy is constant over
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time.25 The continuous parts of the Zakai equations are thus independent of the number

of defaults in our economy. The update of σZ(t) in case of an observable jump (’default’) is

given by Corollary 4.2 and Algorithm 4.3 of Frey and Runggaldier (2010), together with

the initial condition of Proposition 4.1. Taken together, the complete Zakai equations in

our model are

dσcalmt = −λcalm,∗σcalmt dt+ λcont,calmσcontt dt+ σcalmt µcalm
(
ΣΣT

)−1
dΨt

+
n∑
i=1

(
λcalm,calmi σcalmt−

λcont,conti σcontt− + (λcalm,calmi + λcalm,conti )σcalmt−
− σcalmt−

)
dN̂i,t (19)

dσcontt = −λcont,∗σcontt dt− λcont,calmσcontt dt+ σcontt µcont
(
ΣΣT

)−1
dΨt

+
n∑
i=1

(
λcont,conti σcontt− + λcalm,conti σcalmt−

λcont,conti σcontt− + (λcalm,calmi + λcalm,conti )σcalmt−
− σcontt−

)
dN̂i,t (20)

Plugging (18) into (19) and (20) gives

dσcalmt = −λcalm,∗σcalmt dt+ λcont,calmσcontt dt

+σcalmt µcalm
(
ΣΣT

)−1 [ σcalmt

σcontt + σcalmt

(µcalm)T +
σcontt

σcontt + σcalmt

(µcont)T
]
dt

+σcalmt µcalm
(
ΣΣT

)−1
ΣdŴt

+
n∑
i=1

(
λcalm,calmi σcalmt−

λcont,conti σcontt− + (λcalm,calmi + λcalm,conti )σcalmt−
− σcalmt−

)
dN̂i,t

and

dσcontt = −λcont,∗σcontt dt− λcont,calmσcontt dt

+σcontt µcont
(
ΣΣT

)−1 [ σcalmt

σcontt + σcalmt

(µcalm)T +
σcontt

σcontt + σcalmt

(µcont)T
]
dt

+σcontt µcont
(
ΣΣT

)−1
ΣdŴt

+
n∑
i=1

(
λcont,conti σcontt− + λcalm,conti σcalmt−

λcont,conti σcontt− + (λcalm,calmi + λcalm,conti )σcalmt−
− σcontt−

)
dN̂i,t.

To get the filtering equation at last, we apply Itô’s Lemma to p̂ = σcalm

σcont+σcalm
. After some

manipulations, we arrive at

dp̂t =

(
(1− p̂t)λcont,calm − p̂t

n∑
i=1

λcalm,conti

)
dt+ p̂t(1− p̂t)(µcalm − µcont)Σ−TdŴt

+
n∑
i=1

(
p̂t−λ

calm,calm
i

λ̂i
− p̂t−

)(
dN̂i,t − λ̂idt

)
. (21)

25The information content of the jumps is, however, the same as in their paper because of our assump-

tion of constant jump sizes.
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A.2 Filtering in a Regime Switching Model with Jumps

Next, we deduce the filter for an investor in a regime switching model with jumps. Recall

the assumptions

λcalmi = λcalm,calmi + λcalm,conti

λcalm,cont = λcalm,contA + λcalm,contB

λconti = λcont,conti .

With these assumptions, the local distributions of the stock prices conditional on being in

one of the two states (i.e. for p̂ = 0 or p̂ = 1) are the same in an economy with contagious

jumps and in a regime switching economy with jumps. The only thing which changes is

the fact that regime switches and stock price jumps are disentangled now.

Following a very similar logic as for the contagious filtering case, the Zakai equations in

this case are:

dσcalmt = −
n∑
i=1

λcalmi σcalmt dt+ λcont,calmσcontt dt− λcalm,contσcalmt dt (22)

+σcalmt µcalm
(
ΣΣT

)−1
dΨt +

n∑
i=1

(
λcalmi σcalmt−

λconti σcontt− + λcalmi σcalmt−
− σcalmt−

)
dN̂i,t

dσcontt = −
n∑
i=1

λconti σcontt dt− λcont,calmσcontt dt+ λcalm,contσcalmt dt (23)

+σcontt µcont
(
ΣΣT

)−1
dΨt +

n∑
i=1

(
λconti σcontt−

λconti σcontt− + λcalmi σcalmt−
− σcontt−

)
dN̂i,t.

To find these equations, one has to apply the same theorems of Frey and Runggaldier

(2010) as in the previous section, adjusting the definitions slightly. Proceeding as in the

previous section, the conditional expectation of being in the calm state, p̂rs = σcalm

σcont+σcalm

can be determined using Itô’s Lemma:

dp̂rst =
(
(1− p̂rst )λcont,calm − p̂rst λcalm,cont

)
dt+ p̂rst (1− p̂rst )(µcalm − µcont)Σ−TdŴt

+
n∑
i=1

(
p̂rst−λ

calm
i

λ̂rsi
− p̂rst−

)(
dN̂i,t − λ̂rsi dt

)
. (24)

where λ̂rsi = p̂rst−λ
calm
i + (1− p̂rst−)λconti .

A.3 Suboptimal Filtering in a Model with Contagious Jumps

For completeness, we also report the dynamics of the subjective probability p̂pjf under the

smaller filtration H (’pure jump filter’), i.e. in the case where the investor – suboptimally
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– neglects the diffusive information and relies on jump observations only. These dynamics

can – informally – be obtained by setting µcalmi = µconti , i.e. by eliminating the information

from the drift and diffusion of the asset prices:

dp̂pjft =

(
(1− p̂pjft )λcont,calm − p̂pjft

n∑
i=1

λcalm,conti

)
dt (25)

+
n∑
i=1

(
p̂pjft− λ

calm,calm
i

λ̂i
− p̂pjft−

)(
dN̂i,t − λ̂idt

)
.

A more formal proof can also be deduced from Brémaud (1981), pp. 94ff., and is available

from the authors upon request. If the investor filters from the observation of jumps only,

the filter problem is equivalent to the problem of determining the current state of a Markov

chain from observations of Markov chain transitions only, which is much simpler than the

nonlinear filtering computation in the previous sections.

B Portfolio Optimization

The proofs of the portfolio results are also given for a general setup with n risky assets.

Let π = (π1, . . . , πn) denote the vector of portfolio weights.

B.1 Optimal Portfolios in a Model with Contagious Jumps

The filter equation in this case is given by equation (21). The budget constraint is

dXt

Xt−
= rdt+

n∑
i=1

πi

(
dSi,t
Si,t−

− rdt
)

(26)

and the indirect utility function is denoted by G(t, x, p̂). The Bellman equation reads

max
π1,...,πn

[
Gt +Gx · [drift from (26)] +Gp · [drift from (21)]

+0.5Gxx · [squared volatility from (26)]

+0.5Gpp · [squared volatility from (21)]

+Gpx · [volatility from (26)] · [volatility from (21)]

+
n∑
i=1

(
Gi,+ −G

)
λ̂i

]
= 0

where subscripts t, p and x denote partial derivatives. The notation Gi,+ (and similar

notation hereafter) refers to the function G immediately after a jump in asset i. With the
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usual conjecture

G(t, x, p̂) =
x1−γ

1− γ
f(t, p̂),

we get the following differential equation for f :

max
π1,...,πn

[
f ·
[
(1− γ)r + (1− γ)π(µ̂− r1)T − 0.5γ(1− γ)πΣΣTπT −

n∑
i=1

λ̂i

]
+fp ·

[
(1− γ)p̂(1− p̂)π(µcalm − µcont)T

+(1− p̂)λcont,calm − p̂
n∑
i=1

λcalm,conti + p̂

n∑
i=1

λ̂i − p̂
n∑
i=1

λcalm,calmi

]
+fpp · 0.5p̂2(1− p̂)2(µcalm − µcont)(ΣΣT )−1(µcalm − µcont)T

+

n∑
i=1

f

(
t,
λcalm,calmi

λ̂i
p̂

)
· (1− πiLi)1−γ λ̂i + ft

]
= 0.

Taking derivatives with respect to πi gives the first-order conditions:

f · (µ̂i − r)− f · γπiΣΣT ei + fp · p̂(1− p̂)(µcalmi − µconti )

−f

(
t,
λcalm,calmi

λ̂i
p̂

)
· Li(1− πiLi)−γλ̂i = 0.

This is a nonlinear system of one partial differential and n algebraic equations for the

functions f and π1, . . . , πn with boundary conditions f(T, ·) = 1 and fp(T, ·) = 0. Due

to the nonlinear structure of the problem, we have to rely on numerical methods. We

therefore only solve the special case with two risky assets using explicit finite differences.

The equations for this case are stated in Proposition 3. Note that, during the algorithm,

the function f has to be evaluated at points which do not exactly lie on the grid (because of

the jump terms f
(
t,
λcalm,calmi

λ̂i
p̂
)

. To solve this problem, we interpolate f linearly between

the two nearest grid points (t, p̂u) and
(
t, p̂d

)
.

B.2 Optimal Portfolios in a Regime Switching Model with Jumps

The filter equation in this case is given by (24), the budget constraint is the same as in

the previous section. The drift and volatility from (21) in the Bellman equation are thus

replaced by the drift and volatility of the filter (24). Applying the separation conjecture to

the indirect utility function again, we arrive at the following partial differential equation:
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max
π1,...,πn

[
f ·
[
(1− γ)r + (1− γ)π(µ̂− r1)T − 0.5γ(1− γ)πΣΣTπT −

n∑
i=1

λ̂rsi

]
+fp ·

[
(1− γ)p̂rs(1− p̂rs)π(µcalm − µcont)T

+(1− p̂rs)λcont,calm − p̂rsλcalm,cont + p̂rs
n∑
i=1

λ̂rsi − p̂rs
n∑
i=1

λcalmi

]
+fpp · 0.5(p̂rs)2(1− p̂rs)2(µcalm − µcont)(ΣΣT )−1(µcalm − µcont)T

+
n∑
i=1

f

(
t,
λcalmi

λ̂rsi
p̂rs

)
· (1− πiLi)1−γ λ̂rsi + ft

]
= 0

Taking derivatives with respect to πi gives the first-order conditions

f · (µ̂i − r)− f · γπiΣΣT ei + fp · p̂rs(1− p̂rs)(µcalmi − µconti )

−f

(
t,
λcalmi

λ̂rsi
p̂rs

)
· Li(1− πiLi)−γλ̂rsi = 0.

The boundary conditions are equal to those in the model with contagious jumps, and so

is the numerical solution methodology by finite differences.

B.3 Optimal Portfolios with Suboptimal Filtering

If the investor uses the suboptimal pure jump filter instead of the optimal one in an

economy with contagious jumps, the optimal portfolio weights can be computed similarly

again. The budget constraint equals the one in the case with contagious filtering. The drift

and volatility from (21) in the Bellman equation are replaced by the drift and volatility

of the suboptimal filter (25). Since the filter equation (25) contains only drift terms and

jump processes, the second-order partial derivatives with respect to p̂pjf vanish and we

end up with the following partial differential equation:

max
πA,πB

[
f ·
[
(1− γ)r + (1− γ)π(µ̂− r1)T − 0.5γ(1− γ)πΣΣTπT −

n∑
i=1

λ̂i

]
(27)

+fp ·
[
(1− p̂pjf )λcont,calm − p̂pjf

n∑
i=1

λcalm,conti + p̂pjf
n∑
i=1

λ̂i − p̂pjf
n∑
i=1

λcalm,calmi

]
+

n∑
i=1

f

(
t,
λcalm,calmi

λ̂i
p̂pjf

)
· (1− πiLi)1−γ λ̂i + ft

]
= 0.
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Deriving with respect to πi gives the first-order conditions

f · (µ̂i − r)− f · γπiΣΣT ei − f

(
t,
λcalm,calmi

λ̂i
p̂pjf

)
· Li(1− πiLi)−γλ̂i = 0.

With the same boundary conditions as for the contagious filter, this results in a system

of nonlinear differential and algebraic equations again. The equations for the special case

with two risky assets are stated in Proposition 4. Since the differential equation (27)

is of first order, the numerical solution with finite differences has to take the existence

of characteristic manifolds into account. In particular, the stability of the explicit finite

difference scheme depends crucially on whether one uses forward or backward differences

in p̂pjf . We resolve this issue using so-called upwind techniques where the choice of the

differencing depends on the direction of the characteristics at every grid point.
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vi ρ µcalmi µconti λcalm,calmi λcalm,conti λcont,conti λcont,calm Li ξi αi

0.15 0.30 0.09 0.14 0.375 0.125 2.50 1.00 0.05 5.00 0.25

Table 1: Benchmark Parametrization

The table reports the benchmark parametrization of our model used in Section 4. These
parameters imply expected annual returns of the risky assets of 0.065 in the calm state
and 0.015 in the contagion state.

(a) (b) (c)
pure jump filter regime switching filter no filtering at all

Benchmark parametrization

Loss (% of initial wealth) 0.06% 0.13% 5.85%

Higher intensity of contagious jumps (αi = 0.5)

Loss (% of initial wealth) 0.06% 0.36% 7.55%

Higher intensity of cont-calm transitions (λcont,calm = 2)

Loss (% of initial wealth) 0.03% 0.15% 3.21%

Higher risk aversion (γ = 10)

Loss (% of initial wealth) 0.02% 0.04% 1.96%

Higher diffusive correlation (ρ = 0.6)

Loss (% of initial wealth) 0.03% 0.11% 4.74%

Table 2: Utility losses for different investment strategies

The table reports the percentage decrease in initial financial wealth which is necessary to
reduce the expected utility with the contagious filter to the expected utility (a) with the
pure jump filter, (b) with the regime switching filter or (c) without filtering. In order to
assess the loss from strategy (c), we implement a strategy with constant portfolio weights
where the constant portfolio weights are chosen such that the strategy is ex-ante optimal.
The percentage loss in column (c) is thus a lower bound for the utility loss without
filtering. The benchmark parametrization is given in Table 1. The results are computed
in a Monte Carlo simulation with 250,000 sample paths, a planning horizon of 20 years,
and a relative risk aversion of γ = 3.
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Figure 1: Typical sample paths

The figure depicts typical sample paths of the asset prices in a model with contagious
jumps. A downward jump in asset A after 5 years triggers contagion. The jump probabil-
ities for both assets are significantly larger until the economy leaves the contagion state
in t = 6. While there is a loss in asset A as the economy enters the contagion state, the
transition back to the calm state has no direct effect on the asset prices.

36



Contagion‐Inducing
Event

Indicator Variable 
for Calm State

Regime Switching
Filter

Contagious
Filter

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2: Sample paths of the filtered probability and the resulting portfolio weights

For the sample paths given in Figure 1, this figure depicts the filtered probability of being
in the good state (upper panel) and the resulting optimal portfolio weights (lower panel)
of an investor relying on the regime switching filter or the contagious filter. The filtered
probabilities are adjusted downwards at every jump and revert to the mean-reversion
level afterwards as long as no further jump occurs. The probability using a model with
contagious jumps is given by the red path, the probability using the regime switching
filter is given by the black path. The lower panel gives the optimal portfolio weights
for the risky asset A. The red path depicts the optimal weights if the investor uses the
contagious filter, the black path depicts the optimal portfolio for an investor using the
regime switching filter. The parameters for this case are given in Table 1.
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Figure 3: Optimal portfolio weights

The figure depicts the optimal portfolio weights of the risky asset A in the benchmark
case. The solid red line gives the portfolio weights of an investor using the contagious
filter. The dash-dotted blue line depicts the portfolio weights of an investor using the
regime switching filter. The dashed black line gives the portfolio weights of an investor
who uses the pure jump filter in a model with contagious jumps. Note that the optimal
portfolio weights of both assets are equal since the assets are identically parameterized.
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Figure 4: Portfolio update upon a jump

The figure depicts the update in the portfolio weight of the risky asset A after a jump in
asset A. The solid lines show the portfolio weights of asset A before a jump as a function
of the filtered probability p̂. The dashed lines depict the portfolio weights after a jump
in asset A as a function of the filtered probability p̂ before that particular jump. The
portfolio update is thus given by the vertical distance between the dashed and the solid
line (red for the model with contagious jumps, blue for the regime switching model). The
parameters can be found in Table 1.
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