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Non-Technical Summary 
 
 
One of the important lessons from the 2007-2009 financial crisis is that systemic risk and 
spillover effects are significantly underestimated in most widely used risk measures and 
that standard risk measurement instruments, such as value-at-risk (VaR), need to be 
adjusted to adequately reflect overall risk. In this paper, we propose a state-dependent 
sensitivity (SDS) VaR for quantifying risk spillovers among sets of different financial 
institutions.   We estimate a system of quantile regressions for four sets of financial 
institutions (commercial banks, investment banks, hedge funds, and insurance companies), 
in which each type of financial institution is represented by an index of several firms. In 
addition, our empirical model explicitly accounts  for  the  effects  of  different  market  
states  (tranquil,  normal,  and  volatile)  on  the magnitude of risk spillovers. We trace out 
the time path of how shocks move through the system using impulse response functions. 
The SDSVaR model explicitly reveals the magnitude of risk spillovers at a certain point in 
time. Moreover, in contrast to dynamic correlations, we are able to obtain the direction of 
spillovers from one set of institutions to another. Hence, the approach permits a 
delineation of spillover effects from shocks affecting the financial sector as a whole. 
 
As opaque and highly leveraged investment partnerships, hedge funds recently received 
attention as a potential source of contagion, a transmission channel of risk between 
different asset classes and as a potential amplifier of systemic risk in financial markets. If 
highly leveraged hedge funds are forced to liquidate large position at fire-sale prices, 
counterparties sustain heavy losses. This may lead to further defaults or threaten 
systemically important institutions not only directly as counterparties or creditors but also 
indirectly through asset price adjustments (Bernanke, 2006). 
 
While most observers tend to agree that hedge funds have some systemic importance, 
little evidence exists on the magnitude of potential spillover effects. In this paper we 
provide the first empirical estimates of the size of intra-month spillover effects from 
hedge funds to other financial institutions. 
 
In contrast to other recently proposed measures (e.g. Adrian and Brunnermeier 2010), the 
SDSVaR proposed in this paper models the distribution of the value-at-risk. After 
calculating the VaR for each set of institutions, we regress these VaRs over the whole 
range of quantiles on each other, i.e. we regress the VaR of investment banks on the VaR 
of commercial banks, hedge funds and insurance companies. The important point is that 
movements in the VaR change with the financial health of an institution. During tranquil 
market times, i.e. high quantiles of the VaR distribution, when institutions have plenty of 
cushion to absorb shocks, risk spillover between financial institutions are likely to be 
marginal. When the financial crisis hit in 2007 the behavior of the VaR changed 
dramatically. The higher risk faced in the market not only sent the VaR strongly negative, 
i.e. low quantiles of VaR distribution, but also caused the VaR to be more volatile. During 



this period dormant linkages that were building up during tranquil periods became 
suddenly visible and led to high spillovers. 
 
Specifically, during normal market times, a one percentage point increase in the VaR of 
hedge funds is estimated to increase the VaR of investment banks by 0.09 percentage 
points. The same shock, however, increases the VaR of the investment bank industry by 
0.71 percentage points during times of financial distress. Similarly, during normal times a 
one percent increase in the value-at-risk of commercial banks leads to a 0.01 percentage 
point increase in the VaR of investment banks. In times of financial distress the spillovers 
from commercial banks to investment banks increases to 0.05 percentage points. We 
obtain similar magnitudes for spillovers from investments banks to other financial 
institutions, while insurance companies tend to exhibit few spillover effects, even in crisis 
times. Hence, while spillover effects increase overall, hedge fund spillovers to other 
financial institutions increase by much more and are of a much higher economic 
significance. 
 
The findings support initiatives as in Lo (2008), who in his testimony for the U.S. House of 
Representatives emphasizes that hedge funds should be required to provide more 
information on a confidential basis to regulators in order to enable them to more 
accurately assess the risks in the financial sector. They also suggest that limiting 
supervision and regulation to depository institutions may be misguided. 
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Spillover Effects among Financial Institutions: A State-
Dependent Sensitivity Value-at-Risk  Approach 

Abstract 

In this paper, we develop a state-dependent sensitivity value-at-risk (SDSVaR) approach that 

enables us to quantify the direction, size, and duration of risk spillovers among financial 

institutions as a function of the state of financial markets (tranquil, normal, and volatile). 

Within a system of quantile regressions for four sets of major financial institutions 

(commercial banks, investment banks, hedge funds, and insurance companies) we show that 

while small during normal times, equivalent shocks lead to considerable spillover effects in 

volatile market periods. Commercial banks and, especially, hedge funds appear to play a 

major role in the transmission of shocks to other financial institutions. Using daily data, we 

can trace out the spillover effects over time in a set of impulse response functions and find 

that they reach their peak after 10 to 15 days. 

Keywords: Risk spillovers; state-dependent sensitivity value-at-risk (SDSVaR); 
quantile regression; financial institutions; hedge funds 

JEL-Classification: G01, G10, G24 



3 

“Continued focus on counterparty risk management is likely the best course 

for addressing systemic concerns related to hedge funds.” 

Ben S. Bernanke (2006) 

I.  Introduction 

One of the important lessons from the 2007-2009 financial crisis is that systemic risk and 

spillover effects are significantly underestimated in most widely used risk measures and that 

standard risk measurement instruments, such as value-at-risk (VaR), need to be adjusted to 

adequately reflect overall risk. In this paper, we propose a state-dependent sensitivity (SDS) VaR 

for quantifying risk spillovers among sets of different financial institutions.1 We estimate a 

system of quantile regressions for four sets of financial institutions (commercial banks, 

investment banks, hedge funds, and insurance companies), in which each type of financial 

institution is represented by an index of several firms. In addition, our empirical model explicitly 

accounts for the effects of different market states (tranquil, normal, and volatile) on the 

magnitude of risk spillovers. We trace out the time path of how shocks move through the system 

using impulse response functions. The SDSVaR model explicitly reveals the magnitude of risk 

spillovers at time t. Moreover, in contrast to dynamic correlations, we are able to obtain the 

direction of spillovers from one set of institutions to another. Hence, the approach permits a 

delineation of spillover effects from shocks affecting the financial sector as a whole. 

We show that while small during normal times, equivalent shocks lead to considerable 

spillover effects in volatile market periods. For instance, during normal market times, a one 

percentage point increase in the VaR of hedge funds is estimated to increase the VaR of 

investment banks by 0.09 percentage points. The same shock, however, increases the VaR of the 

                                                 
1 We define a risk spillover as a shock in the VaR of one financial institution that is transmitted to the VaR 

of another financial institution 
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investment bank industry by 0.71 percentage points during times of financial distress. Similarly, 

during normal times a one percent increase in the value-at-risk of commercial banks leads to a 

0.01 percentage point increase in the VaR of investment banks. In times of financial distress the 

spillovers from commercial banks to investment banks increases to 0.05 percentage points. 

Overall, we make four main contributions to the literature. First, our two-stage quantile 

regression approach permits an identification of spillover effects as opposed to common shocks 

affecting the entire financial system. Second, we use the identification of directional shocks to 

document differences in their magnitude moving from tranquil to crisis times. Third, the results 

suggest that hedge funds may play an even more prominent role as amplifiers of systemic risk 

than previously thought. And fourth, the econometric approach allows us to quantify intra-month 

spillover effects between different sets of financial institutions. 

The paper is related to Adrian and Brunnermeier’s (2010) CoVaR approach. However, we 

focus on spillover effects among financial institutions, rather than the contributions of financial 

institutions to systemic risk. We furthermore apply a more flexible methodology that allows for 

the fact that spillovers are determined simultaneously and that explicitly measures the spillover 

effects during a crisis. The quantile regression setup and the dynamic structure of the model are 

inspired by Engle and Manganelli’s (2004) CAViaR model. 

The SDSVaR model proposed in this paper is an indirect approach to measuring spillover 

risk. Relevant determinants such as direct linkages between institutions, leverage, liquidity, and 

hedge funds’ asset holdings are not available on a daily basis, so that we cannot explain the 

underlying economic relationships of risk spillovers. Our empirical approach comes with some 

limitations. Certain types of exposure between financial institutions will not be detected. First, 

our approach requires the presence of a shock in the value-at-risk of one institution. For instance, 



5 

when prime brokers tightened margin requirements for hedge funds in 2008, they most likely had 

an impact on the risk of hedge funds. Thus, hedge funds were exposed to investment banks but 

the lack of a shock in the VaR of investment banks prevents us from measuring this type of 

exposure. Second, our analysis is based on daily data which allows us to measure the immediate 

responses (those that occur within the same day or the next day) but leaves spillovers with a 

longer propagation lag undetected.2 This means that our spillover estimates presented in the 

empirical part do not necessarily reflect the historically observed order with which financial 

institutions affected each other. Finally, certain types of exposure require investors to be 

informed about their presence. For instance, the exposure of many banks to AIG via CDS 

contracts was basically unknown to investors and was only revealed after AIG’s bailout in 

September 2008, when a list of banks that benefited most of the rescue package was published. 

On the other hand, the main spillover mechanism that has been proposed in the recent 

literature on systemic risk, the one we have in mind in this paper, does not require any 

knowledge on the side of market participants. The loss and margin spirals described in 

Brunnermeier and Pedersen (2009) and Brunnermeier and Oehmke (2012) generate spillovers 

and externalities purely through the actions and loss reactions of financial institutions. For 

instance, a hedge fund facing margin calls is forced to sell assets in order to raise the required 

cash but the additional supply that the fund injects in the market depresses prices further which 

may lead to margin calls for other financial institutions. The empirical approach used in this 

paper is ideally suited in such an environment. It measures the size, the direction, and the 

                                                 
2 In a previous version of this paper we also tried measuring spillovers with monthly data. The results, 

however, were inconclusive. It seems that the additional observations from the daily frequency are needed to 

estimate spillovers in the tails of the distribution. 
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persistency of responses given a shock in one financial institution. Measuring spillovers through 

daily value-at-risk has a number of other advantages. In particular, it may capture risks that arise 

from relationships among financial institutions that may go beyond those reflected in simple 

accounting variables. For instance, an article in The Economist from August 9, 2007, describes 

the complex relationship between the three major prime brokers (Goldman Sachs, Morgan 

Stanley, and, at that time, Bear Stearns) and hedge funds. Investment banks that own corporate 

bonds may use the swap market to hedge against corporate defaults. But if hedge funds take the 

other side of the swap and at the same time depend on loans from the same bank, the spillover 

risk between the bank and the hedge fund increases. These types of spillover effects, to the extent 

that they are known to the market, would be fully reflected in our estimates. 

The remainder of this paper is organized as follows. The next section places the paper into 

the literature. Section III explains our SDSVaR approach of modeling spillover effects. Section 

IV presents the data and the main empirical results.3 Section V gives some concluding remarks. 

 

II.  Previous Literature 

As opaque and highly leveraged investment partnerships, hedge funds have received 

prominent attention as a potential source of contagion, a transmission channel of risk between 

different financial institutions, and potential amplifiers of systemic risk in financial markets. If 

highly leveraged hedge funds are forced to liquidate large position at fire-sale prices, 
                                                 

3 Since transparency and representativeness are a major concern when working with financial data in general 

and hedge funds in particular, we provide a detailed appendix available at 

http://www.sbf.unisg.ch/en/Lehrstuehle/Lehrstuhl_Fuess/Homepage_Fuess/~/media/Internet/Content/Dateien/Institu

teUndCenters/SBF/Papers/Internet_Appendix_Adams_Fuess_Gropp_JFQA_12-12967.ashx on data source, index 

constituents, and representativeness. 
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counterparties sustain heavy losses. This may lead to further defaults or threaten systemically 

important institutions not only directly as counterparties or creditors but also indirectly through 

asset price adjustments (Bernanke (2006)). It is unlikely, however, that the systemic relevance of 

hedge funds is due to high leverage alone. Brunnermeier and Pedersen (2009) highlight the 

importance of market liquidity and funding liquidity. In particular, hedge funds provide liquidity 

to otherwise illiquid markets as long as access to credit is easy. However, traders are concerned 

about margin calls and avoid high margin positions when funding liquidity dries up. At that 

point, prices are more driven by funding liquidity considerations rather than by movements in 

fundamentals. The high exposure of hedge funds to changes in liquidity causes endogenous risk, 

triggered by selling pressure, to set off further downward pressure on asset prices within the 

financial system. This feedback loop is amplified by the risk management tools themselves 

which send selling signals on the same assets in many institutions simultaneously (Danielsson 

and Shin (2003)). 

While the literature generally tends to agree that hedge funds are systemically important 

and that this importance is likely to increase in the future (Danielsson, Taylor, and Zigrand 

(2005), Garbaravicius and Dierick (2005), Kambhu, Schuermann, and Stiroh (2007), and Chan et 

al. (2006), among others), our study is the first that provides empirical estimates of the size of 

intra-month spillover effects from hedge funds to other financial institutions. In this sense we 

complement a recent paper by Billio et al. (2011), who investigate the interconnectedness among 

financial institutions using monthly data. While they also find that insurance companies, banks, 

brokers, and hedge funds have become highly interrelated over the past decade, they focus on 

longer term relationships and they do not attempt to trace the transmission of shocks through the 

system of financial institutions. Using daily data, we show that the majority of the spillover 
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effects are effective within one month, reaching their peak after 10 to 15 days. These intra-month 

effects remain unobservable to empirical studies based on a monthly data frequency. 

Methodologically the paper is related to Capiello, Gérard, and Manganelli (2005), and 

Boyson, Stahel, and Stulz (2010) who apply quantile regression for binary dependent variable 

models in order to measure contagion effects among hedge fund styles.4 Similarly, Chan et al. 

(2006) and more recently Billio, Getmansky, and Pelizzon (2009) propose a regime-switching 

framework to estimate the probabilities of switching to a “systemic risk regime”. The joint 

distribution of hedge fund returns is studied by Brown and Spitzer (2006) who measure the 

dependence structure between hedge fund strategies using copulae. While the first two studies 

estimate the effects on state probabilities rather than the size of spillover effects, the latter study 

provides estimates on the tail-dependence structure without presenting empirical estimates of the 

magnitude of potential risk spillovers.5 

The paper also complements a growing literature that examines the actual channels of 

transmission between financial institutions in general and from hedge funds to the financial 

system in particular, an issue that we leave unexplored in this paper. However, the majority of 

that literature examines contagion and systemic risk within the banking sector only. The main 

findings on systemic risk generating factors are thereby the growth in credit risk transfers 

(Hakenes and Schnabel (2010), Altunbas, Gambacorta, and Marquez-Ibanez, (2010)), investor 

sentiments (Shleifer and Vishny (2009), Hott (2009)), and the interaction of liquidity shortages 
                                                 

4 Another interesting study that seems to be relevant in our context is the recent working paper by White, 

Kim, and Manganelli (2010) who propose a computationally intensive generalization of Engle and Manganelli’s 

CAViaR model. 

5 In fact, the general belief in 2005 was that “current state-of-the-art methods do not allow us to capture the 

systemic risk component of a hedge fund’s position” (see Danielsson, Taylor, and Zigrand (2005)). 
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and solvency problems among banks (Diamond and Rajan (2005)).6 Gropp, Lo Duca, and Vesala 

(2009), and Gropp and Moerman (2004), as well as Hartmann, Straetmans, and De Vries (2006) 

show that distress in one banking system transmits across national borders to other banking 

systems. Brownlees and Engle (2010) and Acharya et al. (2010) propose marginal expected 

shortfall (MES) and systemic expected shortfall (SES) as measures of systemic risk and 

indicators of financial crises. Implications of financial fragility for the real economy are analyzed 

by Campello, Graham, and Harvey (2010) who find evidence that constrained firms bypass 

attractive investment opportunities and are forced to sell more assets to fund their operations. 

Furthermore, sectors that are highly dependent on external financing also suffer the greatest 

adverse impact on value added during banking crises (Kroszner, Laeven, and Klingebiel 

(2007)).7 

A few recent studies also provide evidence of contagion in the insurance industry. Allen 

and Gale (2005) argue that the considerable growth in the transfer of credit risk across sectors of 

the financial system has led to a shift in risk from the banking sector to the insurance sector. 

Fenn and Cole (1994) investigate the contagion effects among life insurance companies when 

major insurance companies report significant write downs of their portfolios. Negative wealth 

effects on shareholders of other insurance companies are shown to be particularly strong if the 

write downs refer to junk bonds or commercial mortgages. 

                                                 
6 One interesting aspect of the study by Hott (2009) is that uninformed “mood investors” may create a price 

bubble even in the absence of speculation. 

7 Another implication of these findings is that full diversification may in fact not be desirable. Although it 

reduces each institution’s individual probability of failure it also increases the probability of systemic risk (see 

Wagner (2010)). 
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Finally, our approach is complementary to studies that are confined to estimating the 

average impact on the response variable like, e.g., Halstead, Hegde, and Klein (2005), who use 

an event study approach to estimate contagion effects from hedge funds during the LTCM crisis 

in 1998, or Ding et al. (2009), who investigate fund flows during periods of financial distress.8 

 

III.  A State-Dependent Sensitivity VaR Model 

Our approach requires estimating value-at-risk measures for four financial institutions 

which in turn are used as inputs in a quantile regression. This might seem unnecessary technical 

given the standard practice of measuring co-movements among firms and assets with return 

correlations. However, return correlations are insufficient for our purpose. In order to obtain 

meaningful spillover estimates, one must be able to identify the direction of spillovers from one 

set of institutions to another and delineate them from shocks affecting all financial institutions 

simultaneously. Correlation coefficients, which by definition are symmetric, do not permit such 

identification. As a benchmark, consider Table 1 which shows the correlations of daily returns 

and squared daily returns (in brackets) among the four sets of financial institutions considered in 

this paper for the pre-crisis period from April 2003 to June 2007 and the crisis period from July 

2007 to July 2009. 

<< Table 1 about here >> 

As expected, correlation coefficients increase from the pre-crisis to the crisis period, at 

least among commercial banks, insurance companies, and investment banks. However, the 

increase tends to be relatively small, at least compared to some of the results we obtain below. 

                                                 
8 In these studies the response variable is abnormal stock market returns and hedge fund flows, respectively. 

The response variable in our study is the value-at-risk of different financial institutions and the hedge fund industry. 
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Further, the return correlations between hedge funds and the other three sets of institutions tend 

to decline in the crisis, which may lead one to conclude that hedge funds were innocuous in 

transmitting shocks in the crisis. This finding is also robust to using weekly and monthly 

frequencies (not reported) and also holds for correlations of squared returns, i.e. non-linear 

dependency (in brackets). Taking feedback effects into account and identifying the direction of 

spillover effects will let us reach very different conclusions below. Our model yields spillover 

effects that increase by a factor of about 7 from tranquil to volatile times and suggest a central 

role in the transmission of shocks of hedge funds in volatile periods. 

The value-at-risk (VaR) is a risk measure with the appealing property of expressing the 

risk in only one number. Its intuitive interpretation and regulatory importance has led to general 

acceptance and wide application for internal and external purposes. From a statistical standpoint, 

estimation of the VaR requires adequate modeling of the time-varying distribution of returns.9 In 

the past, a vast variety of different approaches have been applied, including GARCH (Bollerslev 

(1986)), extreme value theory (Danielson and De Vries (2000)), conditional autoregressive VaR 

(Engle and Manganelli (2004)), and simulation based methods (Barone-Adesi and Giannopoulos 

(2000)). The 2007-2009 financial crisis, however, has further highlighted the importance of 

accounting for the dependence of a VaR measure of one financial institution i  on the VaR of 

some other institution j  and, perhaps, on the VaR of the entire financial system.10 

                                                 
9 In the multivariate VaR context, additional attention has to be devoted to the tail dependencies of the joint 

density of returns. 

10 We will refer at several points in this paper to the term “financial institution” but this generally 

corresponds to an index of single companies, representing each type of institution (commercial banks, investment 

banks, hedge funds, and insurance companies). 
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To derive the SDSVaR approach, we start with the standard value-at-risk of a single type 

of financial institution. The value-at-risk is the estimated loss of a financial institution that, 

within a given period (usually 1 to 10 days), will be exceeded with a certain probability   

(usually 1% or 5%). Thus, the 1-day 5%-VaR shows the negative return that will not be 

exceeded within this day with a 95% probability, 

(1) t t tprob return Var        . 

Recently, Adrian and Brunnermeier (2010) propose CoVaR as a measure for the contribution of 

a financial institution to systemic risk. This conditional VaR measure incorporates the additional 

risk in financial institution i  caused by institution j  being in distress. If the focus is on 

macroprudential bank regulation, institution i  is taken to be the financial system. A substantial 

difference between institution j ’s CoVaR and its VaR measure then indicates significant 

contribution of this institution to general systemic risk. Consequently, this should result in higher 

capital surcharges for systemic risk enhancing institutions. 

The CoVaR uses the same conceptual approach as VaR, i.e. 

t t tprob return CoVar        . However, the information set t  not only includes the own 

past return history, i.e.    , 1 , 2 0, , ,t i t i t iVaR r r r    , but also the VaR of another institution j: 

(2)    , 1 , 2 0 ,, , , ,t i t i t i j tCoVaR r r r VaR    Using quantile regression, the CoVaR is estimated 

by regressing the %-quantile of the return distribution of institution i on a constant and the 

returns of institution j, jR . The CoVaR between institutions i and j is then given by the fitted 

values from this regression: 
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(3) , ,
ˆˆ ˆ

i j i j jCoVaR R VaR VaR      where iR  is the time series of institution i returns. In 

order to model the condition that institution j is in distress the returns from institution j, jR , are 

replaced by the fitted values of institution j’s value-at-risk, jVaR . 

Adrian and Brunnermeier (2010) extend Equation (3) by adding a set of lagged regressors 

1tM   that capture liquidity risk, market risk, and credit risk, thus generating a flexible risk 

measure that reacts sensitively to the underlying return process.11 In Equation (3) the spillover 

coefficient ̂  is an average over all states of the economy. In this paper, we examine whether  , 

which measures the spillover intensity of jVaR  on iVaR , depends on the state of the economy. 

We hypothesize that during normal market times   may be of little economic significance, 

while the spillover effect becomes very important during times of financial distress. 

We propose a two-step approach to estimate the spillover coefficients  . In contrast to the 

CoVaR model of Adrian and Brunnermeier (2010), which relies on quantile regression to model 

the distribution of returns (see Koenker and Bassett (1978), Koenker (2005)), the SDSVaR 

proposed in this paper models the distribution of the value-at-risk. This has important 

consequences for the interpretation of our results. In the CoVaR model, the quantile   is set to 

low values such as 1% or 5%. The result is a VaR estimate from the quantiles of the return 

distribution. The way the VaR of one institution affects the VaR of another, i.e. the spillover 

coefficients, are assumed to be the same whether markets go through a tranquil period or are hit 

by a recession. In our approach we obtain the value-at-risk in a preceding step which allows us to 
                                                 

11 The estimating equation in Adrian and Brunnermeier (2010) is , , ,
1

system system j system j j system j
t t tR R M      , 

where the regressor set 
1tM 
 consists of weekly financial market variables such as liquidity spread and stock market 

volatility, and system
tR  is measured with the returns of the entire financial system. 
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regress the VaRs over the whole range of quantiles.12 The important point is that movements in 

the VaR change with the financial health of an institution. During tranquil market times, when 

institutions have plenty of cushions to absorb shocks, risk spillovers between financial 

institutions are likely to be marginal. During this market phase the VaR is close to zero (i.e., at 

high quantiles of the VaR distribution) and shows little variation. For stock prices of financial 

institutions this was generally the case during the time period of 2003–2005. When the financial 

crisis hit in 2007 the behavior of the VaR changed dramatically. The higher risk faced in the 

market not only send the VaR strongly negative (i.e., to low quantiles of the VaR distribution), 

but also caused the VaR to be more volatile. During this period dormant linkages that were 

building up during tranquil periods became suddenly visible and led to high spillovers between 

institutions. By modeling different quantiles of the VaR distribution we can measure how the 

response of institutions to shocks in another institution changes with the state of the market. 

Thus, while the 5%-quantile of the return distribution is the value-at-risk, low quantiles of the 

VaR distribution constitute the VaR during times of financial distress. The former step is 

necessary to obtain the desired risk measure, but it is the latter that introduces state dependency 

into the model. 

The first step in our model setup is to estimate the VaRs of all systemically relevant 

financial institutions, each covered by an index of several firms, separately: 

(4) 
, ,ˆ ˆm m t m tVaR z    

                                                 
12 We estimate Equation (5) for three different quantiles with  = {0.125, 0.5, 0.75}, where low, medium, and 

high VaR quantiles describe volatile, normal, and tranquil states of financial markets. 
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with ,ˆm t  as the mean of institution m at time t.13 In the following we consider four financial 

institutions, so that m = i, j, k, and l. It has become practice to model ,ˆm t  by extracting the 

conditional standard deviation from a GARCH model (Kuester, Mittnik, and Paolella (2006)). 

This will account for the time-varying volatility of returns and leads to substantial improvements 

in the sensitivity of the VaR to changes in the return process. We will therefore follow this 

practice.14 

In a second step, mVaR  now becomes the dependent variable and is modeled by its own lag 

and the VaR measures of the other three sets of institutions. In order to interpret the spillover 

coefficients in a causal way the equations also include the following three control variables: The 

VaR of the general U.S. REIT index, the VaR of the GSCI Commodity index, and the VaR of an 
                                                 

13 The mean ,ˆm t  can be estimated in a rolling window. In practice, however, the variation in ,ˆm t  is dwarfed 

by the variation in the volatility and does not contribute to the overall variation in VaR. For simplicity, we therefore 

resort to a constant overall mean. 

14 For most of our return series volatility responds more strongly to negative return changes than to positive 

ones. To capture this fact we apply the asymmetric Exponential GARCH(1,1) of Nelson (1991) with a conditional t-

distribution for the error terms. As a robustness check, we also changed the specification along several dimensions. 

We compared symmetric and asymmetric GARCH models, changed the assumptions of the error distribution, and 

increased the number of lags of the EGARCH model. We also estimated our VaR series using the asymmetric slope 

version of Engle and Manganelli’s (2004) CAViaR model. The main conclusions derived in this paper are unaltered 

by these changes and the spillover coefficients are similar in size. One exception was the EGARCH(2,2) 

specification which led to increased spillover estimated during normal and tranquil market times but the additional 

parameterization was not justified according to the Schwarz Information Criterion. Note also that we use VaR 

instead of volatility as the former has a more direct interpretation. Technically, VaR is just a linear function of the 

volatility so that exactly the same spillover coefficients can be obtained using volatilities. To conserve space, we do 

not show the results here, however, they are available from the authors upon request. 
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index of U.S. nonfinancial stocks. Although we are not interested in the coefficients of those 

variables, they ensure that our spillover effects are not contaminated by the exposure to a 

common factor. 

(5a)     
, , , , , , 11, 1, 2, 3, 4, 1, , ,i t j t k t l t i t i tVaR VaR VaR VaR VaR u                  C tVaR  

(5b)     
, , , 1 , , ,2, 5, 6, 7, 8, 2, , ,j t j t k t l t i t j tVaR VaR VaR VaR VaR u                  C tVaR  

(5c)     
, , , , 1 , ,3, 9, 10, 11, 12, 3, , ,k t j t k t l t i t k tVaR VaR VaR VaR VaR u                  C tVaR  

(5d)     
, , , , , 1 ,4, 13, 14, 15, 16, 4, , ,l t j t k t l t i t l tVaR VaR VaR VaR VaR u                  C tVaR We 

allow the vector of control variables C,tVaR  to have feedback effects with our financial 

institutions by modeling them in the same way, i.e. the full system has another three equations 

for the control variables which are omitted from the presentation of system (5) to improve 

readability. We estimate the parameters in (5) by two-stage quantile regression.15 Like in the 

standard TSLS approach this method involves finding instruments for the endogenous variables 

on the right-hand side of the equation using OLS. The second stage, however, proceeds with 

estimating the parameters with quantile regression instead of OLS. We identify the system by 

assuming that the own lags,  , 1m tVaR   in Equation (5a-d), only affect the VaR of institutions m. 

Hence, our identifying assumption is that controlling for contemporaneous spillover effects from 

the other three sets of institutions, there is no additional spillover effect of the lagged VaR of the 

other institutions. All four coefficients for the own lagged VaR, 4, , 5, , 10, , and 15,  in 

Equations (5a-d) are statistically significant at the one percent level and therefore constitute valid 

                                                 
15 See Powell (1983) for the derivation of the statistical properties of this estimator. 
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instruments to identify the system.16 Equations (5a-d) are the central equations in this paper and 

our interest lies in the estimates of the spillover coefficients  , 1, 2, 3,
ˆ ˆ ˆ, ,i      θB , 

 , 6, 7, 8,
ˆ ˆ ˆ, ,j      θB ,  , 9, 11, 12,

ˆ ˆ ˆ, ,k      θB , and  , 13, 14, 16,
ˆ ˆ ˆ, ,l      θB , respectively.17 

As we have motivated before, the quantiles   of the VaR can be interpreted as reflecting 

the state or condition of financial markets. Note that quantile regression models the conditional 

quantile of the left-hand side variable, and not of the regressors. Accordingly, we estimate the 

spillovers conditioning on the financial health of the institution receiving the spillovers. This 

follows our intuition that financial institutions react more strongly to shocks when they are 

already weakened. The collapse of a large bank may leave other banks in the system unharmed 

during normal market times but can inflict substantial spillovers and distress during times of 

financial crisis.18 When modeling spillover risk it seems natural that VaR measures are 

interdependent among financial institutions and that a set of observed VaR measures at a given 

                                                 
16 Second lag instruments,  , 2i tVaR  , , 2j tVaR  , , 2k tVaR  , and  , 2l tVaR  , are insignificant and including them has no 

effect on the results. 

17 As a byproduct, the fitted values from system (5) give an extension of the common value-at-risk measure 

that explicitly accounts for the spillovers from other institutions. In the following section, we briefly present this 

extended VaR. However, our aim in this paper is not to improve the effectiveness of existing univariate VaRs in 

capturing daily volatility processes. Existing methods are sufficiently capable of this task (see Kuester, Mittnik, and 

Paolella (2006) for a comparison of univariate VaR measures). 

18 The value-at-risk graphs for all four financial institutions (not shown) exhibit very similar patterns over 

time so that the shock originating institution is generally in the same market state as the shock receiving institution. 

We also confirmed this finding in an expanded model that included binary variables indicating financial distress of 

the institutions on the right-hand side of the equation. To conserve space, we do not show the results here, however, 

they are available from the authors upon request. 
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day are determined simultaneously. To address the bias that is introduced by this simultaneous 

framework, we use the common approach from TSLS to replace potentially endogenous right-

hand side variables by instruments obtained from lagged values. This additional effort is 

rewarded with consistent estimates that account for the fact that the VaRs of interdependent 

financial institutions are determined simultaneously.19 

 

IV.  Measuring Spillover Effects among Financial Institutions 

A.  Data 

The subprime and financial crisis of 2007-2009 spread from mortgage-backed securities 

and CDOs to commercial banks and on to hedge funds and investment banks.20 Credit risk has 

furthermore shifted from commercial banks to insurance companies (Allen and Gale (2005)). 

According to Greenlaw et al. (2008) USD 1.1 trillion of potential losses (of approximately USD 

1.4 trillion total reported subprime exposure) were borne by commercial banks, investment 

banks, hedge funds, and insurance companies. Consequently, we investigate the following four 

financial institutions using daily data for the time period 04/02/2003 to 12/31/2010 (2,023 

observations).21 The findings in this paper do not change qualitatively if we use weekly instead 

of daily data. However, we cannot derive reliable VaR measures from monthly data due to the 

absence of significant ARCH effects when estimating conditional volatility. 
                                                 

19 Note that in two-stage quantile regression, like in TSLS, each equation is estimated separately. The state of 

the market is determined by the quantile of the left-hand side variable. 

20 See Brunnermeier (2008) for a comprehensive discussion of these linkages. 

21 A detailed description of all variables is given in the internet appendix available at 

http://www.sbf.unisg.ch/en/Lehrstuehle/Lehrstuhl_Fuess/Homepage_Fuess/~/media/Internet/Content/Dateien/Institu

teUndCenters/SBF/Papers/Internet_Appendix_Adams_Fuess_Gropp_JFQA_12-12967.ashx. 
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We generally use principal component analysis for the index weighting but the results are 

not affected by this specific weighting approach. We reestimated the empirical results in this 

paper using equal weights for all four financial institutions and find very similar results. The 

indices of our four financial institutions are constructed as follows: 

1. Commercial Bank Index (26 institutions): An index for the U.S. commercial banking 

sector. Constituents are taken from Acharya, Pedersen, Philippon, and Richardson 

(henceforth APPR) (2010). Note that the index contains also a few large banks such as 

Citigroup and Bank of America. We are aware of the fact that many large banks 

including Bank of America, Citigroup, JP Morgan, and Deutsche Bank generate income 

from both, commercial and investment banking. Accordingly, the classification of these 

institutions contains some degree of arbitrariness. However, the empirical results in this 

study are generally unaffected by any overlaps between the two groups. The index 

weights are estimated with principal component analysis. 

2. Insurance Company Index (31 institutions): The constituents for this index are also taken 

from APPR (2010) and index weights are estimated with principal component analysis. 

3. Investment Bank Index (8 institutions): The investment bank index was created from the 

main 8 publicly listed investment banks. We used again principal component analysis for 

generating the index weights. 

4. Hedge Fund Index (47 institutions): The Hedge Fund Research Equally Weighted 

Strategies Index is comprised of all eligible hedge fund strategies.22 The HFRX index 

family is an investable index based on information derived from managed accounts for 

                                                 
22 Another potential candidate for a composite index is the HFRX Global Hedge Fund Index. The empirical 

results using the Global Hedge Fund index are similar and yield the same qualitative conclusions. 
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single hedge funds with the longest real track record, i.e. the maximal numbers of 

observations. The composite as well as the style indices cover the most liquid and largest 

single hedge funds in terms of assets under management (AUM). Because the return data 

are not self-reported, self-selection bias is not an issue. Furthermore, the index has not 

been calculated back (backfilling bias) and does not suffer from survivorship bias. The 

HFRX Equally Weighted Index contains 47 hedge funds and, although similar, is not 

fully representative of the overall hedge fund universe.23 In short, we compare monthly 

return distributions and time series properties of the HFRX index and a truly 

representative index. The HFRX index closely follows the development of an index 

derived from a hedge fund universe. Thus, although the HFRX index may be 

contaminated with a measurement error, the bias from using the HFRX is likely to be 

small. 

B.  Baseline Results 

In this section, we present the results for estimating Equation (5). We are particularly 

interested in the spillover coefficient vector θΒ . The estimation uses the sample period from 

04/02/2003 to 12/31/2010 (2,023 observations) in order to cover tranquil, normal, and volatile 

market periods. We choose the 75%-quantile for tranquil market conditions, the 50%-quantile for 

normal market conditions, and the 12.5%-quantile for conditions of financial distress.24 

                                                 
23 A detailed discussion of the differences and their implications for our empirical findings can be found in 

the internet appendix available at 

http://www.sbf.unisg.ch/en/Lehrstuehle/Lehrstuhl_Fuess/Homepage_Fuess/~/media/Internet/Content/Dateien/Institu

teUndCenters/SBF/Papers/Internet_Appendix_Adams_Fuess_Gropp_JFQA_12-12967.ashx. 

24 The choice of specific quantiles introduces a certain degree of arbitrariness in our model. During tranquil 

market times risk spillovers are generally close to zero so that the choice of a specific upper quantile has no 
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Figure 1 shows the slopes of the spillover coefficient for different quantiles. While we 

discuss all spillover coefficients below, in the upper graph of Figure 1 we exemplarily present 

the effects from changes in the aggregate hedge fund VaR on the VaR of investment banks in 

order to demonstrate the importance of permitting different coefficients during different phases 

of the market.25 

<< Figure 1 about here >> 

The solid black regression line shows the spillover coefficient of Equation (3) as implied 

by the CoVaR model of Adrian and Brunnermeier (2010). Note how the slope of this line shows 

some average spillover effect but slopes are estimated to be much flatter during tranquil market 

periods (lighter dashed lines) and much steeper during volatile market phases (darker dashed 

lines). The CoVaR model would estimate the slope of the spillover effects from the hedge funds’ 

VaR to the VaR of investment banks to be about 0.09. This corresponds to the straight black line 

in the lower graph of Figure 1.26 If we interpret this situation as normal market conditions, it is 
                                                                                                                                                             
significant effect on the results. It is also plausible to choose the 50%-quantile for normal market times. Our 

empirical results, however, react more sensitively to quantile changes for volatile market periods. In this context, the 

choice of the 12.5%-quantile reflects the trade-off between measuring the tails of the VaR distribution where the 

largest spillovers occur and an increasing exposure to outliers due to a decreasing number of observations. In section 

IV. D. we therefore present the changes on the results from using a 15%- and a 10%-quantile model. 

25 Similar pictures can be seen for other combinations of financial institutions. The scatter plot above, 

however, is most suitable for demonstrating the effects of state dependencies. Furthermore, our empirical results in 

the next section suggest that shocks from the hedge fund industry are of particular importance. 

26 This slope estimate is based on a regression of the investment banking sector’s VaR on a constant and the 

VaR of the other three financial institutions (see Equation 5). In contrast, the two-dimensional scatter plot 

corresponds to a simple regression with only one regressor and is used to highlight the importance of state-

dependency rather than showing the results from our estimation equation. 
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striking to see the slope of this coefficient to be almost three times higher during market 

conditions of financial distress. Similarly, the spillover effects are close to zero during tranquil 

markets. 

In order to obtain directional spillover effects, Equation (5) is estimated as a system for our 

four financial institutions (commercial banks, investment banks, hedge funds, and insurance 

companies) and for the three control variables (REITs, commodities, and non-financial stocks). 

We obtain a different set of coefficient estimates for each of the three market states (tranquil, 

normal, and volatile). Table 2 shows the results for the spillover coefficients and the 

autoregressive term from system (5). Shocks are originating from the financial institutions 

denoted in the columns of the table and subsequently spill over to the institution denoted in the 

rows of the table.27 For instance, an increase in the VaR of hedge funds by one percent increases 

the VaR of investment banks by 0.087% during normal market periods. During a crisis this 

spillover effect is estimated to be 0.707%, i.e. 8 times higher. Ignoring state-dependency as in the 

case of the CoVaR model from Equation (3) therefore leads to substantial underestimation of 

spillover effects. Note that the standard errors in Table 2 are not only determined by the 

sampling error in the quantile regression framework but also by the uncertainty within the VaRs 

themselves which depend on the EGARCH coefficients. To obtain correct standard errors for 

Table 2 we apply the maximum entropy bootstrap of Vinod and López-de-Lacalle (2009) which 

addresses the time-series properties within each financial institution but also retains the 

dependency characteristics between our four institutions. This technique is used on the raw data 

to produce 200 bootstrapped versions of Table 2 from which the upper and lower quantiles can 

be directly determined. 

                                                 
27 To save space, Table 2 does not show the risk spillovers to the control variables. 
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<< Table 2 about here >> 

Table 2 shows that shocks to hedge funds also have some effect on the VaR of insurance 

companies, and to some extent on commercial banks. Hedge funds and investment banks show 

some degree of interdependence. During volatile market periods, a one percent increase in the 

VaR of investment banks leads to a 0.007% increase in the VaR of hedge funds. Every 

percentage point increase in the VaR of hedge funds in turn has feedback effects in the order of 

0.707%. We also find that commercial banks increasingly affect insurance companies moving 

from tranquil to volatile market periods. These results are in line with Allen and Gale (2005) 

who argue that credit risk has been considerably transferred from the banking sector to insurance 

companies. In terms of spillover coefficient size, however, we conclude from Table 2 that hedge 

funds play a major role in the transmission of shocks to other financial institutions. 

This finding should not come unexpected as recent work directly or indirectly points to 

hedge funds as major contributors of systemic risk. For instance, Brunnermeier and Pedersen 

(2009) show that hedge funds are an important source of market liquidity if funding liquidity is 

high, but traders are less willing to hold high margin positions once funding liquidity declines. 

King and Maier (2009) stress excessive leverage in combination with herding behavior as an 

important source of intra hedge fund spillovers. With high leverage, even moderate price swings 

can force hedge funds to liquidate positions in order to meet margin calls. The high levels of 

leverage and similarity in investment strategies set off a feedback loop where adverse price 

moves result in liquidations (Danielsson and Shin (2003)). One interpretation for the findings in 

Table 2 may be that when major prime brokers experienced financial distress in 2008-2009, 
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hedge funds were the first to be affected by margin calls and a tightening of credit availability.28 

This had a significant negative impact on the funding and the asset side of hedge funds during 

market downturn. As a consequence, risk spillovers among hedge funds arose and affected the 

entire hedge fund industry. Because hedge funds and banks are interconnected, the failure of 

hedge funds leads to capital losses among investment banks (Klaus and Rzepkowska (2009)). 

Note that our results do not imply that major shocks during the 2007-2009 financial crisis 

originated in the hedge funds industry and subsequently spread to other institutions. Indeed, 

anecdotal evidence suggests that some hedge fund distress was caused by increasing margins set 

by prime brokers. Our findings indicate however that shocks in the hedge fund industry (coming 

from prime brokers or any other source) did not stay in the hedge fund industry. Instead, and this 

is what seems to be a distinct feature of hedge funds, shocks to hedge funds were amplified and 

lead to severe spillovers to other financial institutions, in particular to investment banks.29 

                                                 
28 To give an example, in an article from the 23rd October 2008 The Economist reports that “In Europe many 

funds found that the assets they pledged as collateral in return for financing from Lehman have become trapped in 

the bankruptcy process as administrators strain to work out which assets genuinely belong to clients. Worse still, 

many assets have simply disappeared, thanks to a standard industry practice called “rehypotecation”, in which prime 

brokers use clients’ collateral to raise financing of their own.” 

29 Much of hedge fund distress was caused by investor’s mass redemptions during the crisis period. We also 

estimated a version of Table 2 that includes as an exogenous variable the in- and outflows of funds to the aggregate 

hedge fund industry. This variable was only available in monthly frequency so that our results are hardly definitive. 

Based on these estimates, however, the flows variable was economically and statistically insignificant. The results 

are available from the authors upon request. 
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Table 2 also shows the coefficients of the autoregressive term which are estimated to be 

close to one.30 Note that although VaR measures are known to move wildly during crisis periods, 

the autoregressive structure is actually stronger during this time.31 

Comparing the correlations reported in Table 1 to the results based on the SDSVaR model 

reported in Table 2, we find two striking differences. First, while the correlations do tend to 

increase in the crisis, the increase is much smaller than the increases in spillover coefficients 

estimated using SDSVaR. Relying on correlations may substantially underestimate the 

externality of one set of financial institutions on another set during times of financial distress. 

Second, the SDSVaR results suggest a much more prominent role for hedge funds as institutions 

that tend to generate significant spillover effects for other financial institutions. The differences 

are due to the fact that the SDSVaR model eliminates correlation that arise due to all financial 

institutions being hit by the same common shock and isolates the spillover effects. The spillover 

effects can be interpreted as evidence in the spirit of endogenous risk as recently proposed by 

                                                 
30 In the presence of serially correlated disturbances the inclusion of a lagged dependent variable leads to 

biased coefficient estimates. Inspection of the regression residuals showed only little or no autocorrelation with 

values generally below 0.15. 

31 Some coefficients are estimated to be slightly above one. This might raise some concerns about the 

stationarity properties of the VaR series. An economic interpretation would be that if, over a period of time, each 

day is dominated by negative returns, the VaRs of financial institutions respond by turning more negative each day. 

What is typically observed, however, are return series showing alternating patterns of negative and positive changes 

so that negative shocks with lag coefficients above one are followed by positive shocks with coefficients below one. 

Thus, after a shock, the VaR quickly returns to more stable environments rather than increasing indefinitely. Finally, 

the VaR is directly tied to the return series which in turn is stationary. 
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Dannielsson and Shin (2003) and Danielsson, Shin, and Zigrand (2009) and represent an 

amplification of the initial shock to the system.32 

 

C.  Time-Varying Coefficient Estimates and One-Step-Ahead Forecasts 

In this section, we estimate the SDSVaR as a series of one-step-ahead forecasts using a 

rolling window of 500 trading days. This requires estimating the SDSVaR for different quantiles 

and selecting the quantile model that best represents the economic conditions at time t. For 

instance, a SDSVaR model with coefficient estimates that correspond to the lower tail of the left-

hand side VaR distribution is applied during times of financial distress. In this situation, a 

forecast incorporates the “coefficients of the crisis” rather than some average measure which 

may not be representative of the dependence structure during this time.33 

We obtain the SDSVaR as the fitted values from Equations (5a-d). For instance, the 

SDSVaR of institution i,  , ,i j k lSDSVaR  can be expressed as: 

(6)      
, , , , , , , , 11, 2, 3, 4,

ˆ ˆ ˆ ˆˆi j k l t j t k t l t i tSDSVaR VaR VaR VaR VaR                

Graph A of Figure 2 shows the SDSVaR for investment banks with spillovers from 

insurance companies, commercial banks, and the hedge fund industry for the period 02/28/2005 

                                                 
32 We also tested the spillover effects of different hedge fund strategies (see the internet appendix for details). 

Our results suggest that the importance of hedge funds in generating spillover effects to other financial institutions is 

not necessarily due to the convergence of hedge fund styles during volatile times. 

33 The short memory in the autoregressive structure of the SDSVaR model lends itself to one-step-ahead 

forecasts whereas multi-step-ahead forecasts will quickly loose in efficiency. The forecast performance will also 

depend on the stability of the current economic condition. 
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to 12/31/2010 (1,525 observations).34 For comparison, the graph also shows the performance of 

the CoVaR model. While both, the CoVaR and the SDSVaR are very similar during calm market 

periods, the CoVaR is less sensitive to extreme risk during downward markets. In contrast to 

other common VaR methods, such as the normal VaR, however, both VaR models react to 

changes in the underlying return process and indicate a high level of risk during the crisis period 

of 2008 and the first half of 2009.35 In this respect, the SDSVaR is also quite similar to 

established flexible VaR measures, such as the GARCH-type VaR or the CAViaR model of 

Engle and Manganelli (2004). In fact, recent studies show that these univariate VaR models are 

already very efficient so that room for improvements is marginal at best (Kuester, Mittnik, and 

Paolella (2006)). The contribution of the SDSVaR model to the body of existing VaR techniques 

is that (i) it explicitly reveals the magnitude of the spillover at time t, and (ii) it provides useful 

information for scenario analysis in asking questions such as “how will a shock to the hedge fund 

industry affect a certain asset class or a group of financial institutions?”36 

<< Figure 2 about here >> 

Graph B of Figure 2 shows the changes in spillover coefficients Β  and their 

corresponding 95% error bands for a rolling 500 trading day window. From left to right, this 

graph shows the risk spillovers from insurance companies, commercial banks, and hedge funds 

on the VaR of investment banks. In line with our previous findings investment banks are only 
                                                 

34 Note that a foregoing training sample is required to obtain the necessary information for estimating the first 

entry in the series of spillover coefficients. The estimation period therefore does not start in 04/02/2003 as before but 

500 days later. 

35 See for instance Berkowitz and O’Brien (2002) for a comparison of GARCH-type VaR and normal VaR. 

36 We will answer these kinds of questions in subsection IV. D. below when we model the dynamic effects of 

a one-time shock using impulse response functions. 
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marginally affected by insurance companies and commercial banks but react strongly to changes 

in the VaR of hedge funds. For these institutions risk spillovers remain close to zero during 

tranquil market periods and are generally below 0.7 for normal market phases. During crisis 

periods, however, the magnitude of risk spillovers increases markedly with coefficients for the 

lower 12.5%-quantile being often more than twice the size of the spillovers during normal 

market phases. The two standard deviation error bands show that the effects are also significant 

during most of the sample period. Note that the backward looking 500-days rolling window 

causes the coefficients to react with a lag. For instance, coefficient estimates that are based on a 

sample window with its 500th observation in the first half of 2008 reflect the time before 

investment banks were in distress. However, coefficients will start to respond to the new 

circumstances as the crisis period becomes a significant part of the rolling window. Thus, the 

sharp rise in hedge fund spillovers during 2009 in fact reflects occurrences from the second half 

of 2008 when the investment banks were first hit by the financial crisis. 

 

D.  Feedback Effects and Persistence of Risk Spillovers 

The risk spillover estimates from the preceding section marked the responses of financial 

institutions within the same day. If institutions are in fact interdependent and shocks are 

persistent it would seem reasonable (i) to expect reactions to the initial shock to last over a 

longer period of time and (ii) to observe feedback effects among these institutions. In this 

section, we address this issue by employing impulse response functions that show the dynamic 

behavior of a system of SDSVaRs in the presence of a one-time shock to one financial 

institution. 
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Computation of the IRFs is done as in a classical vector autoregression estimated from 

OLS. The only difference is that we do not have one coefficient matrix but three (one for each 

quantile) and hence three different responses. The IRFs are orthogonalized using the standard 

Cholesky decomposition. Since we have no theoretic guidance for a possible ordering of our 

variables, we choose the most conservative approach of ordering the shock transmitting variable 

last. This means that we restrict the responses such that the shocked variable only affects itself at 

time t but generates no contemporaneous spillovers (the first spillovers start in time t+1). While 

this approach means that our IRFs are potentially downward biased, they can be regarded as the 

smallest estimated response given a shock to one financial institution. More importantly, we 

mitigate the problem of an ad-hoc ordering by treating all variables equally. 

Figure 3 shows the impulse response functions for tranquil, normal, and volatile market 

conditions. This corresponds to   being equal to the 75%-, the 50%-, and the 12.5%-quantiles of 

institution i’s value-at-risk distribution over the period 04/02/2003 to 12/31/2010 (2,023 

observations), respectively. We shock each financial institution in turn (the order from left to 

right being insurance companies, commercial banks, investment banks, and hedge funds) and 

observe the response from the other three institutions. The size of the immediate response 

depends on the size of the spillover estimates in Table 2,  1, 2, 16,
ˆ ˆ ˆ, , ,     θB  , whereas the 

persistence of the response depends on both, the spillover size B  as well as the size of the own 

lag, (for example 4,
ˆ

  in Equation (5a)). The VaRs of the financial institutions therefore show 

larger responses for low quantile states during which the distress coefficients are used to 

compute the response. 

Each series is shocked once in the order of one standard deviation. During calm market 

periods, none of the shocks to the VaR measures of any of the four financial institutions leads to 
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significant spillovers to the VaRs of other institutions. This supports our hypothesis that risk 

spillovers only take place under distressed market conditions but do not pose a threat to the 

whole system when financial markets are in a stable condition. 

<< Figure 3 about here >> 

As we proceed towards more volatile market conditions, we can to some extent observe 

risk spillovers from commercial banks to insurance companies. The most striking effects, 

however, come from shocks to the hedge fund industry. They increase the absolute value of VaR 

for all other institutions even under market conditions in which shocks in other industries remain 

unnoticed. During times of extreme volatility, however, shocks from hedge funds have 

substantial effects on all of the remaining three institutions. The largest impact can be observed 

for the VaR of the investment bank sector, for which the response is estimated to be around 

three-quarters the size of the initial shock to the hedge fund industry. In fact, for very low 

quantiles the crisis coefficients do not lead back to a steady state so that the responses are 

explosive. This simply reflects the fact that if, over a period of time, each day would be 

dominated by extreme negative shocks, the VaRs of financial institutions would respond by 

turning more negative each day. We therefore return to the normal market state coefficients after 

the day of the shock. We believe this setting to be reasonable. Even during a financial crisis 

extreme negative shocks only occur over a few days but generally lead to volatility clustering 

containing also positive returns. This also has implications for commercial banks’ shock 

response over time. During normal market times, commercial banks have the largest lag 

coefficient (0.979). In addition, normal times risk spillovers from hedge funds are estimated to 

be the largest for commercial banks. As a consequence, shocks in the banking sector are more 

persistent with only about 50% of the initial shock being adjusted after three months. Note also 
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that part of the response of insurance companies is likely to be due to their exposure to both, 

hedge funds and commercial banks. 

Finally, the four graphs at the bottom of Figure 3 also show the effects of a 15%- and a 

10%-quantile model represented as upper and lower borders of the shaded bands around the 

12.5%-quantile estimates. The width of those bands suggests that the choice of a specific 

quantile may have some effect on the estimates for commercial banks but has only little effect on 

the results from the other three institutions. 

Our estimates concerning the duration of spillover effects also help to resolve an apparent 

conflict with other recent findings. For instance, Billio et al. (2011) find the returns of 

commercial banks and insurers to have a more significant impact on the returns of hedge funds 

and investment banks than vice versa. However, the authors estimate return spillover effects that 

occur between months. The majority of the risk spillover effects in our model, however, are 

effective within one month. These intra-month effects remain unobservable to empirical studies 

based on a monthly frequency. 

 

V.  Conclusion 

In this paper, we propose a state-dependent sensitivity value-at-risk (SDSVaR) which 

measures spillover effects in a system of simultaneous equations conditional on the state of the 

economy. We estimate a system of quantile regressions for four sets of major financial 

institutions (commercial banks, investment banks, hedge funds, and insurance companies) using 

daily data. Conditioning on the state of financial markets (tranquil, normal, and volatile), we find 

the size and duration of risk spillovers among financial institutions to change substantially 

depending on the state of the market. While risk spillovers are small during normal times, 
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equivalent shocks lead to considerable spillover effects during crisis times. For instance, during 

normal market times, a one percentage point increase in the VaR of hedge funds is estimated to 

increase the VaR of investment banks by 0.09 percentage points. The same shock, however, 

increases the VaR of the investment bank industry by 0.71 percentage points during times of 

financial distress. 

Our empirical results further show that, again during market distress, a one percent 

increase in the value-at-risk of the hedge fund industry leads to a 0.34% increase in the VaR of 

insurance companies and a 0.28% increase in the VaR of commercial banks. Using a set of 

impulse response functions, we trace out the responses of the same shocks over time and find 

that they reach their peak after 10 to 15 days. 

The SDS VaR approach developed in this paper permits a delineation of common shocks 

affecting all institutions simultaneously from “pure” spillover effects in a quantile regression 

setting. Comparing the results to simple time-varying correlations, we show that correlations 

may overstate spillovers in normal times and understate spillovers in volatile times. In addition 

we find that hedge funds may play an even more prominent role as transmission channels and 

amplifiers of systemic risk than previously thought. 

Although the SDSVaR model is useful for measuring and quantifying spillover effects, it 

does not explain the mechanisms underlying the estimated spillovers. In order to trace spillover 

effects back to economic relationships, rather than statistical ones, one would need much more 

detailed information on the exposures among different financial institutions, their asset holdings 

and their liability structure. In particular for hedge funds most of this information is currently 

unavailable. Hence, the findings support initiatives as in Lo (2008), who in his testimony for the 

U.S. House of Representatives emphasizes that hedge funds should be required to provide more 
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information on a confidential basis to regulators, e.g., leverage, liquidity, counterparties, and 

holdings, in order to enable supervisors to more accurately assess the risks in the financial sector. 
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Figure 1: Value-at-Risk Scatter Plots and Quantile Effects for Selected Financial Institutions 

 

 

This Figure shows the slopes of the spillover coefficient 1  for various quantiles  . The coefficients show 

the response of the value-at-risk in the investment bank industry (denoted on the y-axis) to a shock 

originating in the hedge fund industry (denoted on the x-axis). The triangles in the scatter plot denote the 

lowest 5% of the investment bank’s VaR. For comparison, the figure also shows the average and thus state-

independent slope coefficient of the CoVaR model (thick line in the upper graph and horizontal solid line 

with 95% confidence interval in the lower graph). In contrast, values above the 75%-quantile are denoted as 

“upper quantiles”; values between the 12.5%-quantile and the 75%-quantile are denoted as “middle 

quantiles”; values below 12.5% are denoted as “lower quantiles”. 
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Figure 2: Dynamic SDSVaR Model for Investment Banks 

Graph A: Out-of-Sample Dynamic SDSVaR 

 
 

Graph B: Time-Varying Coefficients and Error Bands 

Spillovers from Insurance Comp. Spillovers from Commercial Banks Spillovers from Hedge Funds 

This figure shows the behavior and performance of the dynamic SDSVaR model for the period 03/01/2005 – 12/31/2010 (1,524 obs.). 

Graph A shows the series of rolling window one-step-ahead forecasts of the SDSVaR that measures the spillover effects from insurance 

companies, commercial banks, and hedge funds to investment banks. Graph B displays the dynamic behavior of the spillover coefficients 

over time for different states of the economy together with 95% confidence bands indicating the statistical significance of the estimates. 

The 75%-, 50%-, and 12.5%-quantile correspond to tranquil, normal, and volatile market periods, respectively. Because of the backward 

looking behavior of the 500-days rolling-window the coefficients reflect the distress period in 2008 with a lag. 
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Figure 3: Impulse Response Functions for Tranquil, Normal, and Volatile Market Conditions 

Tranquil Market Conditions: 0.75-Quantile 

 

Normal Market Conditions: 0.5-Quantile 

 

Volatile Market Conditions: 0.125-Quantile 
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This figure shows how financial institutions respond to shocks originating from other institutions. The size of the shock of each series is one standard deviation. In addition to the size 

of the response, the impulse response functions also show how quickly institutions respond as well as how persistent the response is. The estimates are obtained from a seven-equation 

system (4 financial institutions and 3 control variables) using two-stage quantile regression. The Cholesky ordering is such that the shocked series comes last. This way, the impulse 

response functions show the most conservative spillover dynamics: the shocked series is assumed to have no spillover effects on the other three institutions in period t, i.e. spillovers 

start with a lag of one day. Ordering the series this way means our spillover estimates are likely to be downward biased. On the other hand, we avoid the problem of an ad-hoc ordering 

by treating all series equally. The observation period ranges from 04/02/2003 to 12/31/2010 (2,023 obs.). During volatile market conditions, the crisis coefficients are used only at the 

time of the shock in t0. In the following days, the model returns to the normal market times’ coefficients. The bottom four graphs show the response for the 0.125-quantile together with 

the 0.15-quantile response (upper border of the bands) and the 0.1-quantile response (lower border of the bands). 
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Table 1: Return and Squared Return Correlations among Financial Institutions 

 Insurance 
Companies 

Commercial
Banks 

Investment 
Banks 

Hedge 
Funds 

Pre-Crisis Period (04/01/2003–06/29/2007) 

Insurance Companies 1    
Commercial Banks 0.75 [0.53] 1   
Investment Banks 0.65 [0.41] 0.71 [0.60] 1  
Hedge Funds 0.43 [0.18] 0.40 [0.26] 0.59 [0.43] 1 

Crisis Period (07/01/2007–07/31/2009) 

Insurance Companies 1    
Commercial Banks 0.83 [0.68] 1   
Investment Banks 0.78 [0.72] 0.75 [0.56] 1  
Hedge Funds 0.28 [0.35] 0.12 [0.16] 0.38 [0.42] 1 

This table shows daily return correlations for the pre-crisis and the crisis period. The data series are 

discussed in detail in subsection IV. A.. Values in brackets denote correlations of squared returns. 
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Table 2: Coefficients of the Static SDSVaR Models 

 Spillover Coefficient Β  Control Variables 
Lag from... 

to… 
Insurance 
Companies 

Commercial 
Banks 

Investment
Banks 

Hedge 
Funds 

 
REITs Commodity Stocks 

 Tranquil 

Insurance 
Companies 

- 0.006** 0.001 0.047**  -0.003** -0.001 -0.004** 0.939** 

Commercial 
Banks 

-0.003 - 0.003* 0.013**  0.000 -0.001 0.003 0.958** 

Investment 
Banks 

0.012** 0.005** - 0.062**  -0.007** -0.002* -0.018** 0.946** 

Hedge 
Funds 

0.001 0.000 0.001* -  0.000 -0.001 -0.002** 0.869** 

 Normal 

Insurance 
Companies 

- 0.020** 0.004 0.074**  -0.008** 0.007* -0.009 0.943** 

Commercial 
Banks 

0.001 - 0.009** 0.088**  -0.007** 0.004 -0.017** 0.979** 

Investment 
Banks 

0.012** 0.007** - 0.087**  -0.007** -0.002 -0.013** 0.957** 

Hedge 
Funds 

0.003** -0.001** 0.001** -  0.000 -0.002** -0.002 0.915** 

 Volatile 

Insurance 
Companies 

- 0.029** 0.012 0.342**  0.013* 0.046** -0.070** 1.039** 

Commercial 
Banks 

0.047** - 0.045** 0.278**  0.026** 0.023* -0.111** 0.999** 

Investment 
Banks 

0.044** 0.051** - 0.707**  -0.021** 0.032 -0.098** 0.999** 

Hedge 
Funds 

-0.007** 0.004** 0.007** -  -0.001 -0.006** -0.001 1.097** 

This table shows the size of the coefficient estimates 
Β  of Equations (5a-d). Institutions at the top of the table denote the origin of the 

shock, while the institutions in table rows denote the responding institution. Coefficients are estimated for tranquil, normal, and volatile 

market states. Market states are measured by the 75%-, 50%-, and the 12.5%-quantile of the value-at-risk distribution of the responding 

institution, respectively. For instance, a one percentage point increase in the VaR of hedge funds increases the VaR of investment banks by 

0.087 percentage points during normal market times. The same shock, however, increases the VaR of the investment bank industry by 0.707 

percentage points during volatile market phases. The estimation period is 04/02/2003 – 12/31/2010 (2,023 obs.). Standard errors are based 

on 200 bootstrap replicates and account for the fact that the regressors themselves are fitted values leading to additional uncertainty in 

parameter estimates. ** and * denote significance at the 1% and 5% level, respectively. 
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