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1 Introduction

Jumps in stock prices or indices have an impact on the mean and variance of returns, but

also on their higher moments. They usually increase the kurtosis and add positive or negative

skewness to the distribution. Furthermore, they lead to discontinuous changes in portfolio

values and are in this sense similar to illiquidity which prevents the investor from trading out

of a position before too large losses are realized (see Liu, Longstaff, and Pan (2003)).

To study the relevance of jumps in a portfolio-choice context, we consider the continuous-time

portfolio optimization problem of an investor who is exposed to jump risk and maximizes the

expected utility of terminal wealth. The investor has access to a risky and a risk-free asset.1

The risky asset follows a generalized jump-diffusion process. Following a large strand of

literature,2 we assume that the stock price dynamics involve the risk of downward jumps which

capture unpredictable negative events. The state variable of the model follows a diffusion

process. In general, this problem cannot be solved analytically, but one has to apply numerical

methods to find the optimal portfolio strategy.

If the specific characteristics of jumps (in particular, their impact on higher moments) do not

matter for portfolio optimization, then diffusion processes should approximate the effect of

jumps on portfolio decisions reasonably well. We thus propose an approach to find approxi-

mating solutions for the optimal portfolio strategies that capture the effect of jumps via mean

and variance only. Our approximation is based on a Taylor expansion of the jump-related

terms in the Hamilton-Jacobi-Bellman (HJB) equation. This idea leads to an approximating

portfolio problem in which the risky asset follows a diffusion process. The advantage of this

approach is that the corresponding problem can be solved using a stochastic representation

result. We refer to the resulting closed-form optimal strategies as approximating strategies.

The crucial question arises how well these approximating strategies perform. More precisely,

we address the question of to what extent the specific characteristics of jumps influence the

1This problem has been introduced in Merton (1969) and Merton (1971).
2See, e.g., Bates (2000), Eraker, Johannes, and Polson (2003), and Liu, Longstaff, and Pan (2003).
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accuracy of the approximation. We first give bounds for the difference between the (unknown)

true strategy and the approximating strategy. Second, we find bounds for the relative wealth

equivalent loss (RWEL), which is the proportion of wealth at time 0 that an investor using

the optimal strategy can sacrifice in order to have the same indirect utility as an investor

using the approximating strategy.3 These bounds can be determined without knowing the

solution of the true model.

We apply our general results to an affine model with stochastic volatility and jumps in the

stock price. The stochastic volatility of the stock is modeled as in Heston (1993), and the

stock price is subject to jumps with a possibly stochastic jump size. Bates (1996, 2000)

studies this class of models in the context of option pricing. The jump size is assumed to

be constant, beta-distributed, or log-normally distributed. The parameters are similar to the

ones in Pan (2002) and Liu, Longstaff, and Pan (2003), who calibrate the model to S&P

500 option data. In the benchmark case, jumps happen on average every 25 years with an

average jump size of -25%. Jumps are thus rare, but severe events. We provide an explicit

solution for the approximating problem and use the numerical procedure from Liu, Longstaff,

and Pan (2003) to also solve the true problem. For risk aversion levels of γ > 7, we find that

the bounds on the optimal strategies are less than 18% apart from each other. We apply the

numerical method from Liu, Longstaff, and Pan (2003) to calculate exact RWELs for a ten

year horizon. For the baseline calibration of the jumps, our approximating strategy performs

well: All RWELs are below 1.16% if jumps are stochastic, and the RWELs are below 1% if

the jump size is constant and γ ≥ 5.

To address the question of when jumps matter for portfolio optimization, we vary the jump

characteristics and parametrizations. We find that jumps matter more, i.e. our approximation

is less accurate, if the expected jump size or the jump intensity is large. Furthermore, we

fix the average impact of jumps and show that rare, but severe jumps matter more than

frequent, but small jumps. Finally, we study a second approximating strategy that is slightly

3This measure for the utility loss is e.g. also used by Liu, Longstaff, and Pan (2003) or Lynch (2001).
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more involved than the initial one, since a relevant constant is only implicitly given. Therefore,

the strategy is not fully explicit. In our numerical examples, its performance is even better

with RWELs of less than 5bps.

The remainder of the paper is organized as follows: Section 2 formulates a general model for

a market with jumps in the stock price, presents our approximation procedure and derives

bounds on the optimal strategy and on the RWEL resulting from this approximation. Section

3 considers an affine specification of the general model calibrated to S&P 500 data. It provides

a numerical solution to the true problem and a closed-form solution to the approximating

problem. Furthermore, we study the optimal and the approximating strategies in different

settings and report the respective RWELs. The settings include varying risk aversions, jump

sizes, and jump intensities. Section 4 concludes. Proofs that do not follow their statement

can be found in the Appendix.

2 Model and Portfolio Optimization

We consider an economy where uncertainty is described by a complete filtered probability

space denoted by (Ω,F ,P) where F = {Ft}t∈[0,T ]. The dynamics of the stock price S are

dS = S (µ dt+ σ dW − LdN) , (1)

where W is a Brownian motion and N is a Cox process with intensity λ and possibly stochastic

jump size L. The drift µ, the volatility σ > 0, and the jump intensity λ ≥ 0 are smooth

functions of time t and a state variable Y . The dynamics of Y are given by

dY = α dt+ β dW̃ . (2)

Its drift α and volatility β > 0 are also smooth functions of t and Y , and W̃ is a correlated

Brownian motion with dW dW̃ = ρ dt. The correlation ρ is constant. Unless stated otherwise,
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Y is the local variance process of the stock, i.e. σ2 = Y .

2.1 Portfolio Problem with Jumps

We consider an investor who maximizes expected utility from terminal wealth with respect

to a power utility function u(x) = x1−γ/(1− γ). He has constant relative risk aversion equal

to γ > 1, which is the empirically relevant case.4 His investment opportunities comprise a

money market account with constant interest rate r and a stock with dynamics given by (1).

Hence, his wealth dynamics are given by

dX = X [(r + πχ) dt+ πσ dW − πLdN ] ,

where π denotes the proportion of wealth invested in stock, and χ ≡ µ − r. The stock’s

expected excess return is given by χ̃ ≡ µ − L̄1λ − r = χ − L̄1λ, where L̄k denotes the

k-th moment of L. The investor’s indirect utility is J(t, x, y)≡supπ∈AEt,x,y[u(XT )], where

the supremum extends over admissible trading strategies and where Et,x,y[ · ] is shorthand for

E[ · |Xt = x, Yt = y]. Here we focus on an appropriate class A of feedback (Markov) strategies

of the form πt = π(t,Xt, Yt).
5 To avoid negative wealth, admissible strategies must satisfy

1− πL ≥ 0 a.s. for all π ∈ A, (3)

and we rule out short sales, i.e.

π ≥ 0 for all π ∈ A. (4)

4See, e.g., Munk (2013) and the references therein.
5See Assumption 2.1 below. Given this assumption, the restriction to feedback strategies is without loss

of generality.
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Remark. Since all relevant quantities are proportional to the investor’s wealth, an elementary

scaling argument implies that J(t, x, y) = x1−γJ(t, 1, y), so we have

J(t, x, y) =
1

1− γ
x1−γg(t, y) (5)

for a suitable function g. In particular, it suffices to consider trading strategies πt = π(t, Yt)

that do not depend on the investor’s current wealth Xt.

2.2 HJB Equation

In general,6 the indirect utility J is a generalized solution (in the viscosity sense) of the

associated Hamilton-Jacobi-Bellman (HJB) equation. For the portfolio problem described

above, the HJB equation is given by

0 = sup
π≥0, 1−πL≥0 a.s.

{
Jt + x(r + πχ)Jx + 0.5x2π2σ2Jxx + αJy + 0.5β2Jyy (6)

+ xπσβρJxy + λ
[
E[J(t, x(1− πL), y)]− J(t, x, y)

]}
,

where the expectation operator E[·] represents the expectation over the jump size L and

J(T, x, y) = u(x). In particular, if J is sufficiently smooth, it is a classical solution of (6). We

are not aware of conditions on the underlying coefficients of the portfolio problem that are

necessary and sufficient for J to be of class C1,2,2, and a detailed analysis of this would be

beyond the scope of this article.7 To focus on the issues of main interest here, we therefore

impose the following technical condition throughout this article:

Assumption 2.1 There is a C1,2,2 solution J of the HJB equation (6) such that the local mar-

tingales
∫ ·

0
πsσsXsJx(s,Xs, Ys) dWs and

∫ ·
0
βsJy(s,Xs, Ys) dW̃s are true martingales for every

6See, e.g., Alvarez and Tourin (1996), Zariphopoulou (2001), Barles and Imbert (2008) as well as Øksendal
and Sulem (2005) and the references therein.

7In the absence of jumps, a set of general sufficient conditions can be found in Theorem 3.3 of Zariphopoulou
(2001). In affine stochastic volatility models, Kallsen and Muhle-Karbe (2010) provide closed-form solutions.
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admissible strategy π ∈ A, and the supremum in (6) is attained at an interior point π∗ ∈ A.

By a standard verification argument, Assumption 2.1 implies that the solution J coincides

with the investor’s indirect utility function; that the maximizer π∗ represents the optimal

trading strategy; and that π∗ satisfies the associated first-order condition.

One special case where it is straightforward to verify Assumption 2.1 is the affine model (22)

of Section 3 with zero correlation, ρ = 0. Then the optimal strategy π∗ is constant and the

indirect utility function has an explicit affine representation (see Proposition 3.2). Under

suitable requirements on χ and L (e.g. L attains its maximal value with positive probability)

the constant π∗ is attained at an interior point.

Remark. Note that by (5) J is automatically smooth with respect to x. Hence the validity

of Assumption 2.1 depends on the function g, which is given in terms of a nonlinear partial

integro-differential equation.8 Closed-form solutions to this equation are not available.

We wish to emphasize that, although this is not explicitly stated there, assumptions analogous

to Assumption 2.1 (and Assumption 2.2 below) are made implicitly in a number of articles

closely related to this one, including Kim and Omberg (1996), Liu, Longstaff, and Pan (2003),

Liu (2007).

2.3 Approximating Portfolio Problem

To find an approximating solution to the portfolio problem, we use a formal second-order

Taylor expansion for the jump term in the HJB equation (6):

J(t, x(1− πL), y) ≈ J(t, x, y)− Jx(t, x, y)xπL+ 0.5Jxx(t, x, y)(xπL)2. (7)

8See (35) in the Appendix.
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This implies E[J(t, x(1− πL), y)] ≈ J(t, x, y)− Jx(t, x, y)xπL̄1 + 0.5Jxx(t, x, y)(xπ)2L̄2. Sub-

stituting this approximation into the HJB equation (6) yields

0 = sup
π≥0

{
J̃t + x[r + π(χ− λL̄1︸ ︷︷ ︸

≡χ̃

)]J̃x + 0.5x2π2(σ2 + λL̄2︸ ︷︷ ︸
≡σ̃2

)J̃xx (8)

+ αJ̃y + 0.5β2J̃yy + xπσβρJ̃xy

}

subject to the boundary condition J(T, x, y) = u(x). We continue to use J to denote the

solution of the HJB equation (6), while J̃ henceforth denotes the function in (8).

Note that (8) can be interpreted as the HJB equation that results from a model in which the

jump-diffusion process for the stock price is replaced by a diffusion process with drift and

volatility adjusted in such a way that the expected return and the local variance match those

of the original process. For L = 0, the two equations are of course identical. The main point

is that the approximating portfolio problem can be solved in closed form. For problem (6),

on the other hand, there is no closed-form solution available. In analogy to Assumption 2.1,

we impose

Assumption 2.2 There exists a C1,2,2 solution J̃ of the approximating HJB equation (8),

and the supremum is attained at an interior point π̃∗.

It is now tempting to use π̃∗ as an “approximately optimal” strategy for the true portfolio

problem. This, of course, raises the decisive question how good this approximation performs:

How large is the utility loss from following the approximating strategy π̃∗ instead of the truly

optimal strategy π∗? Furthermore, can we find an estimate for the approximation error solely

by solving (8), i.e. without knowing the actual indirect utility J and the actual optimal stock

proportion π∗?

To address these points, we first solve the approximating problem (8). In the following, we

assume that the jump intensity is proportional to the diffusive variance, i.e. there is a positive
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constant K such that

λ = Kσ2. (9)

This condition is for instance satisfied in the Heston model with jumps if we set λ = KYt.

Proposition 2.1 (Stochastic Representation of Approximated Indirect Utility) If con-

dition (9) and suitable integrability conditions9 are satisfied, then the following hold:

(i) The indirect utility J̃ is given by

J̃(t, x, y) =
1

1− γ
x1−γ f̃(t, y)k with k≡ γ(1 +KL̄2)

γ(1− ρ2 +KL̄2) + ρ2
= const, (10)

where f̃ has the stochastic representation

f̃(t, y) = Ẽ
t,y
[
e−

∫ T
t r̃u du

]
with − r̃≡1−γ

k

(
r + 0.5 1

γ
χ̃2

σ̃2

)
. (11)

The expectation Ẽ[·] is calculated using the measure P̃ under which Y has drift α̃≡α+ 1−γ
γ

χ̃σβρ
σ̃2 .

(ii) If (χ̃/σ̃)2 is increasing (decreasing) with respect to Y , then f̃y is negative (positive).

Notice that result (ii) can be used to determine the sign of the hedging term in the approxi-

mating strategy (see also the remark after Proposition 3.3).

In order not to drown the main ideas in technicalities, here and in the following we do not

spell out detailed integrability and regularity conditions. The methodology developed in this

article is rigorously justified whenever the standard tools of stochastic analysis (Feynman-Kac

representation, differentiation under the integral, etc.) are applicable, which must be checked

on a case-by-case basis.

9A sufficient condition is that all coefficients of the model are bounded with bounded derivatives of all
orders, and that σ and β are bounded away from zero; see also Zariphopoulou (2001).
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2.4 Bounds on Optimal Strategy

In the following, we derive bounds on the optimal strategy π∗. We assume that the jump size

distribution is positive:

L ≥ 0, (12)

i.e. jumps only have a negative effect on the stock price.10 Furthermore, we do not allow for

short sales.

Recall that the investor’s indirect utility function is given by J(t, x, y) = 1
1−γx

1−γg(t, y). By

Assumption 2.1, the optimal strategy π∗ = π is a solution of the first-order condition

γσ2π = χ+ σβρ
gy
g
− λE[L(1− πL)−γ]. (13)

To compare (13) with the first-order condition of the approximating HJB equation (8), we

consider the first-order expansion (1− πL)−γ = 1 + γπL+R1(−πL), where

R1(−πL) ≡ γ(1 + γ)

2

1

(1 + ξ)γ+2
(πL)2

denotes the remainder term of the expansion with a suitable intermediate value ξ ∈ [−πL, 0].

Therefore, the first-order condition (13) can be rewritten as

γ(σ2 + λL̄2︸ ︷︷ ︸
=σ̃2

)π = χ− λL̄1︸ ︷︷ ︸
=χ̃

+σβρ
gy
g
− λE[LR1(−πL)].

Condition (12) on the jump size and the short-sale constraint (4) together imply that the

presence of jumps can never increase the investor’s utility. Furthermore, by Assumption 2.1

we have π∗ > 0 and 1−π∗L > 0, so (12) guarantees that |π∗L| < 1. This ensures in particular

10There is ample empirical evidence that jumps in stock index returns are on average negative. See, e.g.,
Eraker, Johannes, and Polson (2003) and Liu, Longstaff, and Pan (2003). We make the slightly more restrictive
assumption (12) to rule out positive realized jumps. This helps to streamline the proofs and focus on our
main points.
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that (1− π∗L)−γ has a well-defined binomial series expansion.

We first consider the case ρ = 0. The first-order condition for the true optimal trading

strategy π∗ becomes

π∗ =
χ̃

γσ̃2
− λE[LR1(−π∗L)]

γσ̃2
. (14)

The terms depending on g have vanished. With zero correlation between the stock price and

the state variable, the investor can no longer hedge changes in the investment opportunity set,

and the hedging demand is zero. By abstracting from hedge terms, we can perform a clean

analysis of the effect of jumps. As we will see later on, the general case is more involved. Given

the results of Larsen and Munk (2012), who study sub-optimal strategies with misspecified

hedge terms, this is not surprising. The following propositions give various bounds on the

optimal strategy π∗.

Proposition 2.2 (Bounds on Optimal Stock Demand (I)) If (9) and (12) hold and

ρ = 0, then

π̃∗ ≥ π∗ ≥ χ̃

γσ̃2
− (1 + γ)λ

2σ̃2
(π̃∗)2C(π̃∗),

where C(π)≡E
[

L3

(1−πL)γ+2

]
. Besides, π̃∗ is adjusted to satisfy (3) if needed.

Proposition 2.2 uses the approximating strategy π̃∗ as an upper bound. The next proposition

shows that we can find tighter upper and also lower bounds using a quadratic inequality.

Proposition 2.3 (Bounds on Optimal Stock Demand (II)) If (9) and (12) hold and

ρ = 0, then πu ≥ π∗ ≥ πl, where for j ∈ {u, l}

πj≡−
1

2Aj
+

√
1

(2Aj)2
+

χ̃

γσ̃2Aj

with Au≡ (1+γ)λ
2σ̃2 L̄3 and Al≡ (1+γ)λ

2σ̃2 E
[

L3

(1−πuL)γ+2

]
.
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Next, we consider the general case ρ 6= 0. To derive bounds in this case, we further assume

ρgy ≥ 0, (15)

which is satisfied for realistic calibrations of the Heston model. Without this condition, the

Merton-Breeden term in the first-order condition (13) is negative and in general unbounded

from below, which makes it very hard to derive bounds.

Proposition 2.4 (Bounds on Optimal Stock Demand (III)) If (9), (12) and (15) hold,

then the optimal stock demand π∗ satisfies

π ≥ π∗ ≥ π,

where π is the optimal strategy in an auxiliary model where we set L = 0, and π is the optimal

strategy in an auxiliary model with ρ = 0. The corresponding first-order conditions are

γσ2π = χ− λE[L(1− πL)−γ], and (16)

γσ2π = χ+ σβρ
gnjy
gnj

, (17)

where gnj denotes the relevant function in (5) for L = 0 (“no jumps”).

The following proposition can be used to verify condition (15). Here χy, (σ2)y, and π∗y denote

the partial derivatives of χ, σ2, and π∗ with respect to y.

Proposition 2.5 (Sign of Hedge Term) Assuming (9) and sufficient regularity, the deriva-

tive gy is positive (negative) if

(1−γ)
[
π∗yχ+ π∗χy − γπ∗π∗yσ2 − 0.5γπ∗(σ2)y − λπ∗yE[L(1− π∗L)−γ

]
+λy

{
E[(1− π∗L)1−γ]− 1

}
(18)
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is positive (negative). If π∗ is deterministic, i.e. π∗y = 0, then (18) simplifies to

(1− γ)
[
π∗χy − 0.5π∗(σ2)y

]
+ λy

{
E[(1− π∗L)1−γ]− 1

}
.

2.5 Bounds on Relative Wealth Equivalent Loss

When the investor relies on the approximating strategy from solving (8), he suffers a utility

loss. We measure this utility loss by the RWEL, that is the percentage of initial wealth that

an investor using the optimal strategy can sacrifice and still have the same indirect utility as

an investor using the approximating strategy. The investor’s indirect utility in the original

and the approximating model for two arbitrary feedback strategies π, π̃ ∈ A are given by

G(t, x, y; π) =
1

1− γ
x1−γg(t, y; π) and G̃(t, x, y; π̃) =

1

1− γ
x1−γ g̃(t, y; π̃). (19)

The RWEL ` is defined implicitly by the identity

G(t, x(1− `), y; π∗)︸ ︷︷ ︸
=J(t,x(1−`),y)

= G(t, x, y; π̃∗). (20)

Using the functional form of G, the loss can be calculated as ` = 1 −
(
g(t,y;π̃∗)
g(t,y;π∗)

) 1
1−γ

. To

determine the exact loss, we thus need to know the truly optimal strategy π∗ and the utility

G in the original model. The challenge, however, is to find bounds for this loss that only

depend on the optimal strategy π̃∗ and the utility G̃ in the approximating model.

Theorem 2.6 (Approximation Error) Suppose that π, π̃ ∈ A are admissible strategies

with 1− πL < 1, and assume sufficient integrability to apply the Feynman-Kac theorem.

(i) The difference of the indirect utilities in the original and approximating model reads

G(t, x, y; π)− G̃(t, x, y; π̃) =
1

1− γ
x1−γD(t, y; π, π̃),
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where D(t, y; π, π̃)≡g(t, y; π)− g̃(t, y; π̃) =
∫ T
t

Ê
t,y
[
e−

∫ s
t r̂u duD̂s

]
ds with11

D̂ ≡
{
λE[R2(−πL)]− (1− γ)∆π

[
χ− λL̄1 + σβρg̃y/g̃ − 0.5γ(2 + ∆)π(σ2 + λL̄2)

]}
g̃,

R2(−πL) ≡ γ(1− γ2)

6

1

(1 + ξ)γ+2
(−πL)3, ξ ∈ [− πL, 0],

−r̂≡(1 − γ)(r + πχ − 0.5γπ2σ2) + λ
[
E[(1 − πL)1−γ] − 1

]
, and α̂≡α + (1 − γ)πσβρ. The

expectation Ê[·] is taken under a measure P̂ under which Y has drift α̂ (instead of α), and ∆

is defined by π̃ = π(1 + ∆).

(ii) If π̃ = π̃∗, then D̂ simplifies into

D̂ =
{
λE [R2(−πL)]− 0.5γ(1− γ) (π∆)2 (σ2 + λL̄2

)}
g̃. (21)

(iii) If condition (9) holds and π̃ = π̃∗, then g̃ = f̃k where f̃ and k are given in (10).

Remarks. a) The representation of the utility difference D does not depend on the unknown

function g, but only on the function g̃ calculated in the approximating model.

b) The theorem is not restricted to the optimal strategies π∗ and π̃∗, but it holds for all

admissible strategies π, π̃ ∈ A. It thus provides a general tool to find an estimate for the

error the investor makes if he implements a misspecified strategy π̃ (instead of π∗). Of course,

we are ultimately interested in the case where π = π∗ and π̃ = π̃∗.

c) For parameterizations in which condition (12) holds, the remainder term R2 is positive.

Consequently, D̂ and thus D are positive if π̃ = π̃∗. This implies G ≤ G̃, i.e. the solution to

the approximating problem overestimates the investor’s indirect utility.

We now apply Theorem 2.6 to two specific situations, where the initial data (t, y) are fixed:

g(t, y;π∗) = g̃(t, y;π̃∗) +D(t, y; π∗, π̃∗), and g(t, y;π̃∗) = g̃(t, y;π̃∗) +D(t, y; π̃∗, π̃∗).

11Here g̃ is short-hand for g̃(·, ·; π̃).
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D(t, y; π∗, π̃∗) represents the difference between the original model and the approximating

model when we use the respective optimal strategies π∗ and π̃∗ in both models. D(t, y; π̃∗, π̃∗)

gives the difference between the original model and the approximating model when we use

the approximating optimal strategy π̃∗ in both models.

Theorem 2.6 and the bounds on the optimal strategy π∗ from Subsection 2.4 allow us to find

bounds on these two functions. Suppressing their dependence on (t, y) for simplicity, the

bounds are denoted by

D ≤ D(t, y; π∗, π̃∗) ≤ D, and D̃ ≤ D(t, y; π̃∗, π̃∗) ≤ D̃.

This also gives bounds on g(t, y;π∗) and g(t, y;π̃∗):

D + g̃(t, y;π̃∗) ≤ g(t, y;π∗) ≤ D + g̃(t, y;π̃∗), and D̃ + g̃(t, y;π̃∗) ≤ g(t, y;π̃∗) ≤ D̃ + g̃(t, y;π̃∗).

From these, we get lower and upper bounds for the ratio of the two functions:

D̃ + g̃(t, y;π̃∗)

D + g̃(t, y;π̃∗)︸ ︷︷ ︸
≡B

≤ g(t, y;π̃∗)

g(t, y;π∗)
≤ D̃ + g̃(t, y;π̃∗)

D + g̃(t, y;π̃∗)︸ ︷︷ ︸
≡B

.

which then give upper and lower bounds on the RWEL: 1− (B)
1

1−γ ≤ ` ≤ 1− (B)
1

1−γ . Notice

that B and B depend only on g̃(t, y;π̃∗) and on the bounds for D. In particular, they can be

calculated without knowing the solution to the portfolio problem in the original model.

3 An Affine Model

We now consider a specific (affine) parametrization of the model that is given by

χ(t, y) = χ̄y, σ(t, y) =
√
y, λ(t, y) = λ̄y, α(t, y) = θ − κy, β(t, y) = β̄

√
y. (22)
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The state variable Y is the local diffusion variance of the stock. It follows the square-root

process from the model of Heston (1993). The stock price can jump, and with the jump

intensity being proportional to the state variable Y , condition (9) is satisfied. This model

setup is widely used in the option pricing literature, including Bates (1996) and Bates (2000).

Liu, Longstaff, and Pan (2003) study the corresponding portfolio problem. They derive three

equations that implicitly define the optimal investment strategy and indirect utility function,

which have to be solved numerically. The following proposition summarizes their results.

Proposition 3.1 (Optimal Strategy in the Affine Model) In the model given by the

affine specification (22), the investor’s indirect utility is

J(t, x, y) =
1

1− γ
x1−γeA(t)+B(t)y, (23)

where the following three equations implicitly define the optimal portfolio weight π∗ = π(t)

and the functions A and B:

χ̄− γπ(t) + β̄ρB(t)− λ̄E
[
(1− π(t)L)−γL

]
= 0 (24){

Bt(t) +B(t)
[
(1− γ)β̄ρπ(t)− κ

]
+ λ̄E

[
(1− π(t)L)1−γ]

+
1

2
β̄2B(t)2 +

[
π(t)2γ(γ − 1)

2
+ π(t)(1− γ)χ̄− λ̄

]}
= 0 (25)

At(t) + (1− γ)r + θB(t) = 0 (26)

The boundary conditions are A(T ) = B(T ) = 0.

These equations can be solved numerically by applying a backward differencing scheme. Fur-

thermore, if we use a (not necessarily optimal) strategy π, equations (25) and (26) allow us

to calculate the associated expected utility.

When the correlation between the stock price and its volatility is zero, the optimal strategy

and indirect utility become more explicit.
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Proposition 3.2 (Uncorrelated Local Variance) Consider the model (22) and suppose

that ρ = 0.

(i) The optimal investment policy π∗ is constant over time, independent of the local variance

Y and implicitly given by

γπ∗ = χ̄− λ̄E
[
L (1− π∗L)−γ

]
. (27)

(ii) The indirect utility for a given constant strategy π is12

G0 (t, x, y;π) =
1

1− γ
x1−γg0 (t, y;π) , with g0 (t, y;π)≡e(1−γ)r(T−t)+A0(t,T )+B0(t,T )y, (28)

where

A0(t, T ) ≡ 2θ

β̄2
ln

(
2ae

1
2

(a+κ)(T−t)

2a+ (a+ κ) (ea(T−t) − 1)

)
, B0(t, T )≡

2C0

(
ea(T−t) − 1

)
2a+ (a+ κ) (ea(T−t) − 1)

,

C0 ≡ (1− γ)

(
πχ̄− 1

2
γπ2 +

λ̄

1− γ
{

E
[
(1− πL)1−γ]− 1

})
,

and a≡
√
κ2 − 2β̄2C0. The indirect utility of the optimal strategy is thus J0 (t, x, y) = G0 (t, x, y; π∗),

with π∗ implicitly defined by (27).

(iii) The approximating strategy π̃∗ is also constant and given by

π̃∗ =
χ̄− λ̄L̄1

γ
(
1 + λ̄L̄2

) . (29)

(iv) The RWEL is given in closed form by

1−
[
g0 (t, y; π̃∗)

g0 (t, y; π∗)

] 1
1−γ

.

We now turn to the general case ρ 6= 0. In the approximating market, we have α̃ = θ − κ̃y

with κ̃ = κ + γ−1
γ

˜̄χβ̄ρ
˜̄σ2 where ˜̄χ = χ̄ − λ̄L̄1 and ˜̄σ2 = 1 + λ̄L̄2. We apply Proposition 2.1 to

12We use the subscript 0 to indicate that we assume ρ = 0.
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obtain an explicit solution of the approximating problem.13

Proposition 3.3 (Approximating Problem in the Affine Model) For the affine model (22),

it holds that

f̃(t, y) = e−Ã(t,T )−B̃(t,T )y.

The functions Ã and B̃ are

B̃(t, T ) ≡ 2b
ea(T−t) − 1

ea(T−t)(κ̃+ a)− κ̃+ a
, and

Ã(t, T ) ≡ 2θ

β̄2
ln

(
1− qe−a(T−t)

1− q

)
+

(
2θb

κ̃+ a
− 1− γ

k
r

)
(T − t),

where a ≡
√
κ̃2 + 2bβ̄2, b ≡ 0.5γ−1

kγ
˜̄η2, ˜̄η ≡ ˜̄χ/˜̄σ, q = (κ̃ − a)/(κ̃ + a), and the constant k is

given in Equation (10) with K≡λ̄.

Remark. Obviously, B̃ ≥ 0 and thus f̃y(t, y) = −B̃(t, T )f̃(t, y) ≤ 0. This also follows from

Proposition 2.1 (ii) since χ̃2

σ̃2 =
˜̄χ2

˜̄σ2 y is increasing in y.

3.1 Numerical Results

We use the following parameters that are similar to the ones in Liu, Longstaff, and Pan

(2003):14

χ̄ = 5.363, r = 0.028, θ = 0.115, κ = 5.30, β̄ = 0.225, ρ = −0.57, λ̄ = 1.842. (30)

The mean-reversion level of the local variance Y is θ/κ = 0.0217. Jumps are assumed to be

rare, but severe events. The expected jump size is 25% and jumps arrive on average about

every 25 years (the mean-reversion level of the jump intensity is λ̄θ/κ = 0.04). The jump

intensity is linear in the local variance such that the frequency of jumps increases in volatile

13See also Kallsen and Muhle-Karbe (2010).
14Note that the estimates of Liu, Longstaff, and Pan (2003) also include jumps in volatility.
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times. Empirical studies suggest that this is a feature observed in the data (see, e.g. Pan

(2002)). We consider three different jump size distributions L:

(i) A constant jump size L = 0.25. The admissibility condition (3) implies π < 4.

(ii) A beta-distributed jump size L ∼ KLB (αL, βL). We set αL = 18.5, βL = 55.5, and

KL = 1.0. This implies an expected stock jump size of E [L] = 0.25 and a standard deviation

of SD [L] = 0.05. The support of the jump size distribution is [0, KL]. The admissibility

condition (3) implies π < 1
KL

= 1.

(iii) A shifted log-normal jump size L = 1− eµL+σLZ , where Z is a standard normal random

variable. We set µL = −0.2965 and σL = 0.1327, which implies E [L] = 0.25 and SD [L] =

0.10. The support of the jump size distribution is (−∞, 1], so (3) implies 0 < π < 1. Note

that this jump size distribution violates condition (12), which is needed to calculate bounds

on the optimal strategy. We still report the bounds even though the condition is not satisfied

and check whether they give sensible results also in this case.15

3.2 Optimal Strategies and Bounds for Zero Correlation

We first consider the case ρ = 0. The optimal strategy and the approximating strategy follow

from Theorem 3.2. The bounds on the optimal strategy follow from Propositions 2.2 and 2.3.

Figure 1 illustrates the optimal investment strategy π∗, the approximating investment strategy

π̃∗ and the bounds on the optimal investment strategy for a constant jump size as a function

of relative risk aversion γ. In line with intuition, the optimal and the approximating portfolio

weight decrease in γ. This also holds true for the distance between the bounds and the

optimal strategy π∗ as well as for the distance between the approximating strategy π̃∗ and

the optimal strategy π∗. By construction, the bounds II are narrower than the bounds I. They

particularly improve on the lower bound for low levels of risk aversion, for which the lower

bound I is sometimes even negative. For risk aversion levels of γ > 7, the difference between

15We have deliberately chosen a higher standard deviation than for the beta distribution to make positive
jump realizations more likely. See also the discussion of Table 1 below.
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the upper and lower bound II is below 10%. The difference between the approximating and

optimal strategy is below 5% for γ > 7.

Figure 2 depicts the corresponding results if the jump size is beta-distributed. The upper

bound π ≤ 1 which follows from the admissibility condition (3) is now actually binding for

low levels of risk aversion. The lower and upper bounds are weaker than for a constant jump

size. For γ > 7, the upper and lower bounds II are less than 12% apart from each other.

The approximating and optimal strategies differ by less than 6% for γ > 7. Figure 3 depicts

the same results for log-normal jumps.16 For γ > 7, the upper and lower bounds II differ by

less than 18%. The approximating and optimal strategies are less than 8% apart for γ > 7.

To summarize, both the approximating strategy and the bounds are reasonable close to the

optimal strategy.

3.3 Bounds for Negative Correlation

We now consider a model with ρ = −0.57 and analyze the bounds III implied by Proposition

2.4. We do not report the other bounds as they require ρ = 0. The upper bound does not

depend on the type of jumps and is thus identical for all three jump types. For risk aversion

levels between 2 and 10 this upper bound is very large and is thus not reported. Figure 4

depicts the lower bounds and the corresponding optimal strategies for t = 0. We observe

little differences between the lower bounds for deterministic and stochastic jump sizes. The

lower bounds for different stochastic jump size distributions are also very close to each other.

The admissibility condition (3) is binding for low risk aversion levels (γ < 4). To summarize,

the bounds on the optimal strategy π∗ for ρ = −0.57 are not very tight, but the optimal

strategies are rather close to the lower bounds.

16Notice that the results of Section 2.4 require L ≥ 0.
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3.4 Relative Wealth Equivalent Losses

We now examine how the approximating strategy performs compared to the true optimal

strategy. The comparison is done via the RWEL. This loss measure is independent of the

current level of wealth, but depends on the local variance Y . In the following, we set the local

variance equal to its mean reversion level. Furthermore, we assume a time horizon of T = 10

years.

For a correlation of ρ = 0, we can use Theorem 3.2 to calculate the RWEL explicitly. Figure

5 shows the RWEL for different assumptions about the jump size as a function of the relative

risk aversion γ. For a constant jump size, the losses decrease monotonically in γ, and they

are below 1% if γ > 4. For beta-distributed and log-normally distributed jumps, the losses

are below 1% and 2%, respectively. In both cases, the upper bound from (3) is binding

for the optimal and approximating strategies for small values of γ. The optimal and the

approximating strategy then coincide, which of course brings the RWEL down to zero. When

γ increases and the restrictions are not binding anymore, RWELs first increase and then

decrease again.

To calculate RWELs for the case ρ = −0.57, we can use the numerical procedure of Proposition

3.1. Table 1 reports the RWELs for risk aversion levels γ between 2 and 10. For low risk

aversion levels, there are high losses only when the jump size is constant, while the losses are

zero for stochastic jump sizes. This is again due to condition (3) that implies an upper bound

on the admissible strategies if the jump size is stochastic. This upper bound becomes binding

if the relative risk aversion is small. As a result, the RWELs are all below 1.16% if jumps are

stochastic. They are below 1% if the jump size is constant and γ ≥ 5. Notice that the losses

are smaller for log-normally distributed jumps than for beta-distributed jumps, although the

average loss is the same in both cases. This is also true in Tables 2-4 below.

Next, we study the dependence of RWELs on the expected stock jump size. In our model, the

expected excess return on the stock is
(
χ̄− E [L] λ̄

)
y. When we change the expected jump

21



size E[L], we offset its impact on the expected excess return by simultaneously changing χ̄.

For constant jumps we simply set the jump size equal to the new expected jump size. For beta-

distributed jumps, we adjust the support of the jump size distribution.17 For log-normally

distributed jump sizes, we only change the expected jump size and leave the volatility fixed

at 10%.

Table 2 reports the RWELs for different expected jump sizes ranging from 0.05 to 0.30 for

a constant jump size, a beta-distributed jump size, and a log-normally distributed jump

size, respectively. In line with intuition, higher expected jump sizes result in higher RWELs

across all risk aversion levels. If the expected jump size is below 15%, the RWELs are below

21bps (constant), 10bps (beta distribution), and 2bps (log-normal distribution). The highest

RWELs are obtained for an expected jump size of 30%: 14.38% (constant, γ = 2), 2.55%

(beta distribution, γ = 5), and 2.03% (log-normal distribution, γ = 5). To summarize, our

approximation performs well if the jump size is stochastic or if it is constant and below 20%.

Next, we study the dependence of RWELs on the jump intensity. As before, we fix the

expected excess return on the stock and use χ̄ to offset the change in the jump intensity

parameter λ̄. Table 3 reports the RWELs for different jump intensity parameters λ̄ ranging

from 0.1 to 4.0 (the benchmark value is λ̄ = 1.84156).18 Results for all three jump size

specifications are reported. Larger jump intensities result in higher RWELs across all risk

aversion levels. If γ ≥ 5, the RWELs are below 2% for all jump types and λ̄ ∈ [0.1, 4.0]. The

highest RWELs are 8.41% (constant, γ = 2.0, λ̄ = 4.0), 2.66% (beta distribution, γ = 4.0,

λ̄ = 4.0), and 1.83% (log-normal distribution, γ = 5.0, λ̄ = 4.0).

Finally, we vary both jump size and jump intensity, but keep the product λ̄L̄1 fixed. There-

fore, we do not change the average impact of jumps and address the question whether our

17We set KL to be twice the expected stock jump size. Additionally, we linearly scale the volatility of
the stock jump size with respect to the maximal stock jump size KL according to Vol (L) = 0.01KL

0.5 . This
procedure avoids unrealistic or even non well-defined distributions. If the volatility would be left at 0.1 for an
expected jump size of 0.05 with a maximal jump size of 0.1, we cannot obtain a fit with a beta distribution.

18Note that the resulting jump intensity is λ̄Y . If Y is equal to its mean reversion level, the jump intensity
varies from 22bps to 8.69%.
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approximate strategy performs better for rare, but severe jumps or frequent, but moderate

jumps. Intuitively, we expect that utility losses are smaller for the latter case since Taylor ap-

proximations are in general more accurate around the expansion point. Table 4 confirms this

intuition for all jump parametrizations. In every row, the losses are monotonically increasing

in the expected jump size. These results suggest that jumps matter the most when they are

rare, but severe.

3.5 An Alternative Approximate Strategy

Our previous results suggest that our approximating strategy performs well in most cases.

Nevertheless, approximating the jump component by adjusting the diffusion components im-

plies that a typical risk characteristic of jumps is lost. In particular, we ignore the illiquidity

character of jumps, which is discussed in Liu, Longstaff, and Pan (2003).

We thus construct an alternative approximating strategy. For ρ = 0, we solve for the optimal

and approximating strategies π∗0 and π̃∗0 by using Theorem 3.2. Both strategies are constant

over time. They ignore the impact of correlation, but the difference between them accounts for

the characteristics of jumps. We now use this difference as a proxy for the missing component

in the approximating strategy. If π̃∗ is the approximating strategy for general ρ 6= 0, we define

the new approximating strategy by

π̃2≡π̃∗ + (π∗0 − π̃∗0) . (31)

The strategy in (31) requires only the approximating strategy π̃∗, the approximating strategy

π̃∗0 for ρ = 0, and the optimal strategy π∗0 for ρ = 0. The first two are known explicitly, the

last is constant over time and can be computed from (27).

We calculate RWELs using the numerical procedure of Proposition 3.1. As before, we run

robustness checks with respect to risk aversion, the expected jump size, and the jump intensity

for all three jump types. Table 5 shows that the adjusted strategies perform very well. For
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the same parameter intervals as considered above, the largest RWEL is below 5 basis points.

It is obtained for a small risk aversion of γ = 2 and a large constant jump size of 30%.

4 Conclusion

We consider the continuous-time portfolio optimization problem of an investor with con-

stant relative risk aversion who maximizes expected utility of terminal wealth in a model in

which the risky asset follows a generalized (not necessarily affine) jump-diffusion model with a

stochastic state process. This problem cannot be solved analytically. We use a Taylor approx-

imation to obtain an approximating portfolio problem and provide an analytical stochastic

representation of its solution. Furthermore, we derive bounds on the deviation between the

optimal and the approximating strategy and bounds on the RWELs. These bounds do not

depend on the solution of the portfolio planning problem in the original market and can thus

be calculated even when this solution is unknown.

Furthermore, we study a specific affine parametrization of the portfolio problem in which the

risky asset follows a Heston (1993) process with jumps. We provide an explicit solution to the

approximating problem and use the numerical procedure from Liu, Longstaff, and Pan (2003)

to solve the true problem. It turns out that the utility losses resulting from approximating

a jump by a diffusion process are negligible if expected jump sizes are below 20%. One key

finding is that jumps matter more, i.e. our approximation is less accurate, when jumps are

rare, but severe events. By contrast, the effect of frequent, but moderate jumps on optimal

portfolio choice is small.
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A Proofs

Proof of Proposition 2.1. (i) Using (5) we write J̃(t, x, y) = 1
1−γx

1−γ f̃(t, y)k, f̃(T, y) = 1

with k chosen as in (10). Substituting into (8) yields π̃∗ = χ̃
γσ̃2 + kσβρ

γσ̃2

f̃y

f̃
, where

0 = f̃t + 1−γ
k

(
r + 0.5 1

γ
χ̃2

σ̃2

)
︸ ︷︷ ︸

≡−r̃

f̃ +
(
α + 1−γ

γ
χ̃σβρ
σ̃2

)
︸ ︷︷ ︸

α̃

f̃y + 0.5β2f̃yy. (32)

Applying Feynman-Kac to (32) gives the representation (11) of f̃ . Note that, if all coefficients

are bounded and σ and β are bounded away from zero, then (32) is elliptic with bounded

coefficients, so the conditions of the Feynman-Kac theorem are satisfied.19

(ii) We set R̃(t, Yt) ≡ r̃t. R̃y = ∂R̃/∂y denotes the partial derivative of the function R̃ with re-

spect to its second argument. Then, using appropriate integrability conditions on the underly-

ing coefficients that ensure differentiability of f̃ , f̃y(t, y) = Ẽ
t,y
[
e−

∫ T
t r̃u du

∫ T
t
−R̃y(u, Yu)Pu du

]
,

where Pu ≡ ∂
∂y
Yu denotes the derivative of the process Y with respect to its initial value Y (t) =

y.20 P satisfies the stochastic differential equation dPs = Ps[α̃y(s, Ys)dt+βy(s, Ys)d
˜̃
W ], where˜̃

W is a P̃-Brownian motion. Since P ≥ 0, the sign of fy is negative if −R̃y = 1−γ
2kγ

∂(χ̃/σ̃)2

∂y
≤ 0

and positive if −R̃y ≥ 0. Since γ > 1 by assumption, the claim follows. �

Proof of Proposition 2.2. Our assumption yields 0 ≤ π∗L ≤ 1 and thus the intermediate

value ξ satisfies ξ ∈ [−π∗L, 0] ⊂ [−1, 0]. Then E [LR1(−π∗L)] = γ(1+γ)
2

(π∗)2E
[

L3

(1+ξ)γ+2

]
> 0

and the upper bound π∗ ≤ χ̃
γσ̃2 = π̃∗ follows from (14). We also have 1 + ξ ≥ 1−π∗L > 0 and

thus 1
1+ξ
≤ 1

1−π∗L
. Consequently,

E [LR1(−π∗L)] =
γ(1 + γ)

2
(π∗)2E

[
L3

(1 + ξ)γ+2

]
≤ γ(1 + γ)

2
(π∗)2C(π∗). (33)

Next, we use the upper bound π̃∗ = χ̃
γσ̃2 (adjusted to satisfy (3) if needed) and obtain

E [LR1(−π∗L)] ≤ γ(1+γ)
2

(π̃∗)2C(π̃∗). Substituting into (14) yields π∗ ≥ χ̃
γσ̃2− (1+γ)λ

2σ̃2 (π̃∗)2C(π̃∗),

19See Proposition 12.5 in Cont and Tankov (2004) or Friedman (1975).
20See Protter (2005), pp. 311ff.
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which is the asserted lower bound. �

Proof of Proposition 2.3. First, we derive a sharper upper bound on π∗. The first-order

condition (14) is equivalent to

π∗ =
χ̃

γσ̃2
− λ(1 + γ)

2σ̃2
(π∗)2E

[
L3

(1 + ξ)γ+2

]
. (34)

From (12) and the admissibility conditions (3) and (4), it follows that −1 < ξ ≤ 0. Therefore,

1
1+ξ
≥ 1 and thus E

[
L3

(1+ξ)γ+2

]
≥ E [L3] = L̄3. Plugging this bound into (34) then gives

π∗ ≤ χ̃
γσ̃2 −Au(π∗)2 with Au > 0. The solution of this quadratic inequality yields a lower and

an upper bound on π∗. The lower bound is negative and is thus redundant due to (4). The

upper bound is given by πu. Next, we derive a non-trivial lower bound. From (33), we have

that π∗ ≥ χ̃
γσ̃2 − λ(1+γ)

2σ̃2 C(π∗)(π∗)2. Since C(π) is increasing, we use πu as an upper bound in

C(π∗) to obtain the quadratic inequality π∗ ≥ χ̃
γσ̃2 −Al(π∗)2. This yields the lower bound πl,

whereas the corresponding upper bound is negative and thus obsolete. �

Proof of Proposition 2.4. The first-order condition of the problem is stated in (13).

Condition (15) implies that the Merton-Breeden term is positive. The myopic demand in

(16) thus gives a lower bound for π∗. Furthermore, jumps always decrease the stock price by

(12). If we set L = 0, the stock in this market is more attractive than the stock with jumps

in the original market. Hence, the strategy given in (17) is an upper bound on the optimal

strategy π∗. �

Proof of Proposition 2.5. By the HJB equation (6), the function g in (5) satisfies

0 = gt + (1− γ)(r + π∗χ− 0.5γ(π∗)2σ2)g + [α + (1− γ)π∗σβρ]gy + 0.5β2gyy (35)

+λ
{

E[(1− π∗L)1−γ]− 1
}
g.

28



Differentiating (35) with respect to the state variable y gives

0 = gty + (1− γ)(π∗yχ+ π∗χy − γπ∗π∗yσ2 − 0.5γ(π∗)2(σ2)y)g + (1− γ)(r + π∗χ− 0.5γ(π∗)2σ2)gy

+[αy + (1− γ)(π∗yσβ + π∗(σβ)y)ρ]gy + [α + (1− γ)π∗σβρ]gyy + 0.5(β2)ygyy + 0.5β2gyyy

+λy

{
E[(1− π∗L)1−γ]− 1

}
g − λ(1− γ)π∗yE[L(1− π∗L)−γ]g + λ

{
E[(1− π∗L)1−γ]− 1

}
gy.

Sorting terms and denoting the coefficient of g by Ď shows that Ď is equal to (18). Applying

the Feynman-Kac theorem gives gy(t, y) =
∫ T
t

Ě
t,y

[e−
∫ s
t řu duĎsg(s, Ys)] ds, where −ř = (1 −

γ)(r+π∗χ−0.5γ(π∗)2σ2) + [αy + (1−γ)(π∗yσβ+π∗y(σβ)y)ρ] +λ
{

E[(1−π∗L)1−γ]−1
}

and the

expectation Ě[·] is taken under a measure under which Y has drift α+(1−γ)π∗σβρ+0.5(β2)y.

Since g > 0, the derivative gy is positive (negative) if Ď is positive (negative). �

Proof of Theorem 2.6. (i) The functions g ≡ g(·, ·; π) and g̃ ≡ g̃(·, ·; π̃) in (19) satisfy

0 = gt + (1− γ)(r + πχ− 0.5γπ2σ2)g + [α + (1− γ)πσβρ]gy + 0.5β2gyy (36)

+λ
{

E[(1− πL)1−γ]− 1
}
g,

0 = g̃t + (1− γ)(r + π̃χ− 0.5γπ̃2σ2)g̃ + [α + (1− γ)π̃σβρ]g̃y + 0.5β2g̃yy (37)

−λπ̃(1− γ)(L̄1 + 0.5γπ̃L̄2)g̃.

We set D ≡ g− g̃ and define the process ∆ such that π̃ = π(1 + ∆). Furthermore, the Taylor

series of (1 − Lπ)1−γ converges, since this is in fact a binomial series and 1 − πL < 0. Its

second-order expansion reads (1 − πL)1−γ = 1 − (1 − γ)πL − 0.5γ(1 − γ)π2L2 + R2(−πL),

where R2(−πL) ≡ γ(1−γ2)
6

1
(1+ξ)γ+2 (−πL)3 with a suitable ξ ∈ [−πL, 0], denotes the remainder

term. Subtracting (37) from (36) and rearranging terms yields

0 = Dt − r̂D + α̂Dy + 0.5β2Dyy + D̂, (38)
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where −r̂ ≡ (1− γ)(r + πχ− 0.5γπ2σ2) + λ
[
E[(1− πL)1−γ]− 1

]
, α̂ ≡ α + (1− γ)πσβρ, and

D̂ =
{
λE[R2(−πL)]− (1− γ)∆π

[
χ− λL̄1 + σβρg̃y/g̃ − 0.5γ(2 + ∆)π(σ2 + λL̄2)

]}
g̃.

(ii) follows because π̃∗ satisfies the first-order condition χ−λL̄1−γπ̃∗(σ2+λL̄2)+σβρg̃y/g̃ = 0.

(iii) follows from Proposition 2.1. �

Proof of Proposition 3.2. (i) The first-order condition of (6) reads

γσ2π = χ+ σβρ
gy
g
− λE[L(1− πL)−γ]. (39)

Using (22) the local variance cancels and we obtain γπ = χ̄ + β̄ρgy
g
− λ̄E

[
L (1− πL)−γ

]
.

Equation (27) follows for ρ = 0.

(ii) Using the affine model (22) in (36) with ρ = 0 yields the following PDE for g0(t, y; π):

0 = g0,t + (1− γ)rg0 + θg0,y − κyg0,y + 0.5β̄2yg0,yy + C0yg0 (40)

with C0 ≡ (1−γ)
(
πχ̄− 1

2
γπ2 + λ̄

1−γ

{
E
[
(1− πL)1−γ]− 1

})
as J0(t, x, y) = 1

1−γx
1−γg0(t, x, π)

is the indirect utility if we use the optimal strategy π = π∗. It is straightforward to check

that g0(t, y; π) given in (28) solves (40).

(iii) follows from (22) and ρ = 0 in (39).

(iv) follows from the definition of ` in (20). �
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Figure 1: Investment strategies for the affine model (22) with constant jump size for
different risk aversion parameters γ. The correlation parameter ρ is set to zero and thus the
optimal strategy and the bounds are constant over time. The solid line is the optimal strategy. The
dashed lines are the lower and upper bounds I (Proposition 2.2). The dotted lines are the bounds
II (Proposition 2.3). Note that the upper bound I is the approximating strategy.

Figure 2: Investment strategies for the affine model (22) with beta-distributed jump
size for different risk aversion parameters γ. The correlation parameter ρ is set to zero and
thus the optimal strategy and the bounds are constant over time. The solid line is the optimal
strategy. The dashed lines are the lower and upper bounds I (Proposition 2.2). The dotted lines are
the bounds II (Proposition 2.3). The investment cannot be higher than 1 due to (3). Note that the
upper bound I is the approximating strategy.
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Figure 3: Investment strategies for the affine model (22) with log-normally distributed
jump size for different risk aversion parameters γ. The correlation parameter ρ is set to zero
and thus the optimal strategy and the bounds are constant over time. The solid line is the optimal
strategy. The dashed lines are the lower and upper bounds I (Proposition 2.2). The dotted lines are
the bounds II (Proposition 2.3). The investment cannot be higher than 1 due to (3). Note that the
upper bound I is the approximating strategy.

Figure 4: Lower bounds III on optimal investment π∗t implied by Proposition 2.4 for
the affine model (22) for different risk aversion parameters γ. The remaining parameters
are from (30). The black lines depict the lower bounds and the blue lines show the corresponding
optimal strategies for t = 0. The solid lines are for a deterministic jump size, the dashed lines for a
beta-distributed jump size and the dotted lines for a log-normally distributed jump size. The upper
bounds are large and thus omitted.
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Figure 5: Relative wealth equivalent losses in the affine model (22) for different risk
aversion parameters γ. The correlation is set to ρ = 0, the remaining parameters are from (30).
The solid line uses a deterministic jump size, the dashed line beta-distributed jump size and the
dotted line log-normally distributed jump size.

Table 1: RWELs for various risk aversions γ and different jump specifications in the
affine model (22). This table reports the RWELs that an investor using the optimal strategy
would sacrifice in order to have the same indirect utility as an investor using the approximating
strategy. The indirect utilities of the optimal strategy and approximating strategy in the true
market are obtained using Proposition 3.1. Subsection 3.1 describes the three jump specifications.
The reported values are in percentages.

Risk Aversion RWEL
γ Constant Beta Log-normal

2.0 5.45 0.00 0.00
3.0 2.06 0.00 0.00
4.0 1.18 0.01 0.00
5.0 0.80 1.16 0.73
6.0 0.60 0.85 0.53
7.0 0.48 0.67 0.41
8.0 0.40 0.55 0.33
9.0 0.34 0.47 0.28
10.0 0.29 0.40 0.24
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Table 2: RWELs for different expected jump sizes L and risk aversions γ. This table
reports the RWELs that an investor using the optimal strategy would sacrifice in order to have the
same indirect utility as an investor using the approximating strategy. The indirect utilities of the
optimal strategy and approximating strategy in the true market are obtained using Proposition 3.1.
When we vary the constant (expected) jump size, we adjust the parameters such that the expected
excess return on stock remains the same as in the benchmark calibration (30). This procedure is
described in Subsection 3.4. The quoted values are in percentages.

Risk Aversion Constant Jump Size
γ 0.05 0.10 0.15 0.20 0.25 0.30
2 0.00 0.01 0.21 1.41 5.45 14.38
3 0.00 0.01 0.09 0.57 2.06 5.20
4 0.00 0.00 0.06 0.34 1.18 2.93
5 0.00 0.00 0.04 0.23 0.80 1.98
6 0.00 0.00 0.03 0.18 0.60 1.47
7 0.00 0.00 0.03 0.14 0.48 1.17
8 0.00 0.00 0.02 0.12 0.40 0.96
9 0.00 0.00 0.02 0.10 0.34 0.82
10 0.00 0.00 0.02 0.09 0.29 0.71

Risk Aversion Expected Stock Jump Size (Beta)
γ 0.05 0.10 0.15 0.20 0.25 0.30
2 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.01 1.14
5 0.00 0.01 0.10 0.40 1.16 2.55
6 0.00 0.01 0.07 0.30 0.85 1.88
7 0.00 0.01 0.06 0.23 0.67 1.48
8 0.00 0.01 0.05 0.19 0.55 1.21
9 0.00 0.01 0.04 0.16 0.47 1.02
10 0.00 0.01 0.04 0.14 0.40 0.88

Risk Aversion Expected Stock Jump Size (Log-normal)
γ 0.05 0.10 0.15 0.20 0.25 0.30
2 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.06
5 0.00 0.00 0.00 0.12 0.72 2.03
6 0.00 0.00 0.02 0.13 0.53 1.47
7 0.00 0.00 0.02 0.10 0.41 1.14
8 0.00 0.00 0.01 0.08 0.33 0.92
9 0.00 0.00 0.01 0.07 0.28 0.78
10 0.00 0.00 0.01 0.06 0.24 0.67
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Table 3: RWELs for different jump intensity parameters λ̄ and risk aversions γ. This
table reports the RWELs that an investor using the optimal strategy would sacrifice in order to have
the same indirect utility as an investor using the approximating strategy. The indirect utilities of the
optimal strategy and approximating strategy in the true market are obtained using Proposition 3.1.
When we vary the jump intensity parameter, we adjust the parameters such that the expected excess
return on stock remains the same as in the benchmark calibration (30). This procedure is described
in Subsection 3.4. For the constant jump size we use L = 0.25 = const. For the beta-distributed
jump size we use E(L) = 0.25 and Var(L) = 0.052, for the log-normally distributed jump size we use
E(L) = 0.25 and Var(L) = 0.12. The quoted values are in percentages.

Risk Aversion Jump Intensity Parameter λ̄ (Constant)
γ 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2 0.08 1.20 2.97 4.55 5.82 6.80 7.53 8.05 8.41
3 0.02 0.36 1.01 1.66 2.23 2.71 3.10 3.40 3.63
4 0.01 0.19 0.55 0.94 1.29 1.59 1.83 2.03 2.19
5 0.01 0.13 0.37 0.63 0.88 1.09 1.27 1.42 1.53
6 0.00 0.09 0.27 0.47 0.66 0.82 0.96 1.08 1.17
7 0.00 0.07 0.22 0.37 0.53 0.66 0.77 0.86 0.94
8 0.00 0.06 0.18 0.31 0.43 0.55 0.64 0.72 0.78
9 0.00 0.05 0.15 0.26 0.37 0.47 0.55 0.61 0.67
10 0.00 0.04 0.13 0.23 0.32 0.41 0.48 0.54 0.58

Risk Aversion Jump Intensity Parameter λ̄ (Beta)
γ 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.05 0.37 0.95 1.73 2.66
5 0.00 0.20 0.56 0.93 1.26 1.53 1.74 1.91 2.04
6 0.01 0.14 0.41 0.68 0.93 1.14 1.31 1.44 1.54
7 0.01 0.11 0.32 0.53 0.73 0.90 1.04 1.15 1.23
8 0.00 0.09 0.26 0.44 0.60 0.74 0.86 0.95 1.02
9 0.00 0.07 0.22 0.37 0.51 0.63 0.73 0.81 0.87
10 0.00 0.06 0.19 0.32 0.44 0.55 0.63 0.70 0.76

Risk Aversion Jump Intensity Parameter λ̄ (Log-normal)
γ 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10
5 0.00 0.03 0.29 0.54 0.81 1.08 1.34 1.59 1.83
6 0.00 0.06 0.21 0.39 0.59 0.79 0.99 1.18 1.35
7 0.00 0.05 0.16 0.30 0.46 0.62 0.78 0.93 1.07
8 0.00 0.04 0.13 0.25 0.37 0.51 0.64 0.76 0.88
9 0.00 0.03 0.11 0.21 0.32 0.43 0.54 0.64 0.75
10 0.00 0.03 0.09 0.18 0.27 0.37 0.46 0.56 0.65
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Table 4: RWELs for different jump parametrizations, but constant average impact of
jumps. This table reports the RWELs that an investor using the optimal strategy would sacrifice
in order to have the same indirect utility as an investor using the approximating strategy. The
indirect utilities of the optimal strategy and approximating strategy in the true market are obtained
using Proposition 3.1. We vary the jump intensity and the jump size such that the average impact
of jumps stays constant, i.e. we fix the product λ̄L̄1 to its value in the benchmark calibration (30).
The quoted values are in percentages.

Risk Aversion Constant Jump Size
γ 0.05 0.1 0.15 0.2 0.25 0.3

2.0 0.00 0.07 0.47 1.84 5.45 13.35
3.0 0.00 0.04 0.21 0.76 2.06 4.60
4.0 0.00 0.02 0.13 0.45 1.18 2.54
5.0 0.00 0.02 0.09 0.32 0.80 1.70
6.0 0.00 0.01 0.07 0.24 0.60 1.26
7.0 0.00 0.01 0.06 0.19 0.48 1.00
8.0 0.00 0.01 0.05 0.16 0.40 0.82
9.0 0.00 0.01 0.04 0.14 0.34 0.69
10.0 0.00 0.01 0.04 0.12 0.29 0.60

Risk Aversion Expected Jump Size (Beta)
γ 0.05 0.1 0.15 0.2 0.25 0.3

2.0 0.00 0.00 0.00 0.00 0.00 0.00
3.0 0.00 0.00 0.00 0.00 0.00 0.00
4.0 0.00 0.00 0.00 0.00 0.01 0.50
5.0 0.06 0.08 0.21 0.53 1.16 2.23
6.0 0.05 0.06 0.16 0.40 0.85 1.63
7.0 0.04 0.05 0.13 0.31 0.67 1.28
8.0 0.03 0.04 0.11 0.26 0.55 1.04
9.0 0.03 0.04 0.09 0.22 0.47 0.88
10.0 0.02 0.03 0.08 0.19 0.40 0.76

Risk Aversion Expected Jump Size (Log-normal)
γ 0.05 0.1 0.15 0.2 0.25 0.3

2.0 0.00 0.00 0.00 0.00 0.00 0.00
3.0 0.00 0.00 0.00 0.00 0.00 0.00
4.0 0.00 0.00 0.00 0.00 0.00 0.00
5.0 0.00 0.00 0.00 0.23 0.72 1.68
6.0 0.01 0.01 0.05 0.19 0.53 1.20
7.0 0.01 0.01 0.04 0.15 0.41 0.93
8.0 0.00 0.00 0.03 0.12 0.33 0.75
9.0 0.00 0.00 0.03 0.10 0.28 0.63
10.0 0.00 0.00 0.02 0.09 0.24 0.54
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Table 5: RWELs of the alternative approximating strategy for different jump intensity
parameters λ̄ and risk aversions γ. This table reports the RWELs that an investor using
the optimal strategy would sacrifice in order to have the same indirect utility as an investor using
the alternative approximating strategy of Section 3.5. When we vary the jump intensity parameter,
we adjust the parameters such that the expected excess return on stock remains the same as in
the benchmark calibration (30). For the constant jump size we use L = 0.25 = const. For the
beta-distributed jump size we use E(L) = 0.25 and Var(L) = 0.052, for the log-normally distributed
jump size we use E(L) = 0.25 and Var(L) = 0.12. The quoted values are in percentages.

Risk Aversion Jump Intensity Parameter λ̄ (Constant)
γ 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2 0.00 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03
3 0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02
4 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.02
5 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01
6 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
7 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
8 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
9 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
10 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01

Risk Aversion Jump Intensity Parameter λ̄ (Beta)
γ 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.02
5 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.02
6 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01
7 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01
8 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01
9 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
10 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01

Risk Aversion Jump Intensity Parameter λ̄ (Log-normal)
γ 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03
5 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.02
6 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02
7 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
8 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
9 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
10 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
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